研究了电膜与纳米氧化石墨烯增强中空纤维复合提取婴幼儿配方奶粉中的三聚氰胺的方法

IF 1 4区 工程技术 Q4 CHEMISTRY, MULTIDISCIPLINARY Iranian Journal of Chemistry & Chemical Engineering-international English Edition Pub Date : 2021-08-09 DOI:10.30492/IJCCE.2021.522944.4520
M. Ebrahimi, M. Rezaee, S. Shoeibi
{"title":"研究了电膜与纳米氧化石墨烯增强中空纤维复合提取婴幼儿配方奶粉中的三聚氰胺的方法","authors":"M. Ebrahimi, M. Rezaee, S. Shoeibi","doi":"10.30492/IJCCE.2021.522944.4520","DOIUrl":null,"url":null,"abstract":"Melamine is a high nitrogen compound used as an adulteration to high protein foods such as infant formulae. There are many different methods for extraction and analysis of melamine which are time-consuming, complex, and need large volumes of organic solvents.A validated method for extraction and cleanup of melamine (MEL) in infant formulae, water, and powdered coffee creamer was developed using a Nanographene oxide (NGO) assisted with electromembrane extraction (NGO/EME) followed by HPLC-UV detection. Supported liquid membrane (SLM) with NGO was used as the adsorbent interface in this study. Synthesized NGO was characterized by Fourier transform infrared (FTIR) spectroscopy and scanning electron microscope (SEM). Effective parameters such as voltage magnitude, SLM solvent, pH of acceptor and donor phases, extraction time, and stirring rate were optimized. The method provided the LOD and LOQ 0.03, and 0.1µg/kg in infant formula, respectively. The accuracy was in the satisfaction recovery rate between 106-109% with RSD 4.83-5.31 for infant formulae as well as the other tested matrices. The developed method based on NGO/EME extraction presents a reliable and rapid analysis for melamine in infant formula.","PeriodicalId":14572,"journal":{"name":"Iranian Journal of Chemistry & Chemical Engineering-international English Edition","volume":"104 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2021-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Developed and rapid extraction of melamine in infant formulae by combined electromembrane with nanographene oxide reinforced hollow fiber\",\"authors\":\"M. Ebrahimi, M. Rezaee, S. Shoeibi\",\"doi\":\"10.30492/IJCCE.2021.522944.4520\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Melamine is a high nitrogen compound used as an adulteration to high protein foods such as infant formulae. There are many different methods for extraction and analysis of melamine which are time-consuming, complex, and need large volumes of organic solvents.A validated method for extraction and cleanup of melamine (MEL) in infant formulae, water, and powdered coffee creamer was developed using a Nanographene oxide (NGO) assisted with electromembrane extraction (NGO/EME) followed by HPLC-UV detection. Supported liquid membrane (SLM) with NGO was used as the adsorbent interface in this study. Synthesized NGO was characterized by Fourier transform infrared (FTIR) spectroscopy and scanning electron microscope (SEM). Effective parameters such as voltage magnitude, SLM solvent, pH of acceptor and donor phases, extraction time, and stirring rate were optimized. The method provided the LOD and LOQ 0.03, and 0.1µg/kg in infant formula, respectively. The accuracy was in the satisfaction recovery rate between 106-109% with RSD 4.83-5.31 for infant formulae as well as the other tested matrices. The developed method based on NGO/EME extraction presents a reliable and rapid analysis for melamine in infant formula.\",\"PeriodicalId\":14572,\"journal\":{\"name\":\"Iranian Journal of Chemistry & Chemical Engineering-international English Edition\",\"volume\":\"104 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2021-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iranian Journal of Chemistry & Chemical Engineering-international English Edition\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.30492/IJCCE.2021.522944.4520\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Chemistry & Chemical Engineering-international English Edition","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.30492/IJCCE.2021.522944.4520","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

三聚氰胺是一种高氮化合物,被掺入婴儿配方奶粉等高蛋白食品中。三聚氰胺的提取和分析有许多不同的方法,这些方法耗时、复杂且需要大量的有机溶剂。采用纳米氧化石墨烯(NGO)辅助电膜萃取(NGO/EME),然后采用HPLC-UV检测,建立了一种用于婴幼儿配方奶粉、水和咖啡奶精中三聚氰胺(MEL)的提取和净化方法。本研究采用含NGO的负载液膜(SLM)作为吸附界面。利用傅里叶变换红外光谱(FTIR)和扫描电镜(SEM)对合成的NGO进行了表征。优化了电压大小、SLM溶剂、受体和给体相pH、萃取时间和搅拌速率等有效参数。该方法在婴儿配方奶粉中的检出限和定量限分别为0.03和0.1µg/kg。婴儿配方奶粉及其他基质的满意度回收率为106 ~ 109%,RSD为4.83 ~ 5.31。建立了一种基于NGO/EME萃取的快速、可靠的婴儿配方奶粉中三聚氰胺分析方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Developed and rapid extraction of melamine in infant formulae by combined electromembrane with nanographene oxide reinforced hollow fiber
Melamine is a high nitrogen compound used as an adulteration to high protein foods such as infant formulae. There are many different methods for extraction and analysis of melamine which are time-consuming, complex, and need large volumes of organic solvents.A validated method for extraction and cleanup of melamine (MEL) in infant formulae, water, and powdered coffee creamer was developed using a Nanographene oxide (NGO) assisted with electromembrane extraction (NGO/EME) followed by HPLC-UV detection. Supported liquid membrane (SLM) with NGO was used as the adsorbent interface in this study. Synthesized NGO was characterized by Fourier transform infrared (FTIR) spectroscopy and scanning electron microscope (SEM). Effective parameters such as voltage magnitude, SLM solvent, pH of acceptor and donor phases, extraction time, and stirring rate were optimized. The method provided the LOD and LOQ 0.03, and 0.1µg/kg in infant formula, respectively. The accuracy was in the satisfaction recovery rate between 106-109% with RSD 4.83-5.31 for infant formulae as well as the other tested matrices. The developed method based on NGO/EME extraction presents a reliable and rapid analysis for melamine in infant formula.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
22.20%
发文量
0
审稿时长
6-12 weeks
期刊介绍: The aim of the Iranian Journal of Chemistry and Chemical Engineering is to foster the growth of educational, scientific and Industrial Research activities among chemists and chemical engineers and to provide a medium for mutual communication and relations between Iranian academia and the industry on the one hand, and the world the scientific community on the other.
期刊最新文献
Thermodynamic Modeling the Solubility of CO2 in the Binary and Three-Component Aqua System of Methyldiethanolamine (MDEA) Using the N-Wilson-NRF The high performance of diethylhydroxylamine in comparison with hydrazine for the removal of dissolved oxygen from boilers of power plant Acoustofluidic separation of microparticles: a numerical study Morpho-structural characterization and electrophoretic deposition of xonotlite obtained by a hydrothermal method A 2E Analysis and Optimization of a Hybrid Solar Humidification-Dehumidification Water Desalination System and Solar Water Heater
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1