max-out - min-in问题:一个数据分析工具

J. Cerdeira, M. J. Martins, M. Raydan
{"title":"max-out - min-in问题:一个数据分析工具","authors":"J. Cerdeira, M. J. Martins, M. Raydan","doi":"10.2139/ssrn.4073636","DOIUrl":null,"url":null,"abstract":"Let N = { 1 , 2 , . . . , n } be a set of entities and W = [ w ij ] a non-negative symmetric matrix of weights expressing quantified relations between pairs of elements of N , with w ii = 0, for i = 1 , . . . , n . For S ⊆ N , we define ϕ ( S ) to be the sum of the weights of pairs of elements where an element is in S and the other is in ¯ S = N \\ S , minus the sum of the weights of pairs of elements in S . We consider the problem of finding S ⊆ N for which ϕ ( S ) is maximized. We call this combinatorial optimization problem the max-out min-in problem (MOMIP). In this talk I will present two alternative formulations of MOMIP, discuss the application of MOMIP in the selection of variables in exploratory data analysis and in the identification of clusters in the context of cluster analysis, and report preliminary results of its applicability in priority area selection for species coping with climate change, an urgent issue in Conservation Biology. This is a joint work with Maria Jo˜ao Martins (ISA, ULisboa), Marcos Raydan (CMA, FCT-NOVA) and Diogo Alagador","PeriodicalId":10582,"journal":{"name":"Comput. Oper. Res.","volume":"84 1","pages":"106218"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The max-out min-in problem: A tool for data analysis\",\"authors\":\"J. Cerdeira, M. J. Martins, M. Raydan\",\"doi\":\"10.2139/ssrn.4073636\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let N = { 1 , 2 , . . . , n } be a set of entities and W = [ w ij ] a non-negative symmetric matrix of weights expressing quantified relations between pairs of elements of N , with w ii = 0, for i = 1 , . . . , n . For S ⊆ N , we define ϕ ( S ) to be the sum of the weights of pairs of elements where an element is in S and the other is in ¯ S = N \\\\ S , minus the sum of the weights of pairs of elements in S . We consider the problem of finding S ⊆ N for which ϕ ( S ) is maximized. We call this combinatorial optimization problem the max-out min-in problem (MOMIP). In this talk I will present two alternative formulations of MOMIP, discuss the application of MOMIP in the selection of variables in exploratory data analysis and in the identification of clusters in the context of cluster analysis, and report preliminary results of its applicability in priority area selection for species coping with climate change, an urgent issue in Conservation Biology. This is a joint work with Maria Jo˜ao Martins (ISA, ULisboa), Marcos Raydan (CMA, FCT-NOVA) and Diogo Alagador\",\"PeriodicalId\":10582,\"journal\":{\"name\":\"Comput. Oper. Res.\",\"volume\":\"84 1\",\"pages\":\"106218\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comput. Oper. Res.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.4073636\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comput. Oper. Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.4073636","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设N ={1,2,…, n}是实体的集合,W = [wij]是表示n的元素对之间的量化关系的非负对称权重矩阵,其中W ii = 0,对于i = 1,…,名词;对于S,我们定义φ (S)为一个元素在S中,另一个元素在¯S = N \ S中的元素对的权值之和,减去S中元素对的权值之和。考虑求出其中φ (S)最大的S≤N的问题。我们称这种组合优化问题为最大输出最小输入问题(MOMIP)。在这次演讲中,我将介绍MOMIP的两种替代公式,讨论MOMIP在探索性数据分析中的变量选择和聚类分析背景下的聚类识别中的应用,并报告其在优先区域选择中适用性的初步结果,以应对气候变化,这是保护生物学的一个紧迫问题。这是与Maria Jo ~ ao Martins (ISA, ULisboa), Marcos Raydan (CMA, FCT-NOVA)和Diogo Alagador合作的作品
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The max-out min-in problem: A tool for data analysis
Let N = { 1 , 2 , . . . , n } be a set of entities and W = [ w ij ] a non-negative symmetric matrix of weights expressing quantified relations between pairs of elements of N , with w ii = 0, for i = 1 , . . . , n . For S ⊆ N , we define ϕ ( S ) to be the sum of the weights of pairs of elements where an element is in S and the other is in ¯ S = N \ S , minus the sum of the weights of pairs of elements in S . We consider the problem of finding S ⊆ N for which ϕ ( S ) is maximized. We call this combinatorial optimization problem the max-out min-in problem (MOMIP). In this talk I will present two alternative formulations of MOMIP, discuss the application of MOMIP in the selection of variables in exploratory data analysis and in the identification of clusters in the context of cluster analysis, and report preliminary results of its applicability in priority area selection for species coping with climate change, an urgent issue in Conservation Biology. This is a joint work with Maria Jo˜ao Martins (ISA, ULisboa), Marcos Raydan (CMA, FCT-NOVA) and Diogo Alagador
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A family of hybrid conjugate gradient method with restart procedure for unconstrained optimizations and image restorations Dual-neighborhood iterated local search for routing and wavelength assignment Using submodularity in solving the robust bandwidth packing problem with queuing delay guarantees Loads scheduling for demand response in energy communities Simulation-based inventory management of perishable products via linear discrete choice models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1