在单个FPGA上实现多个应用的硬件加速

Yidi Liu, Benjamin Carrión Schäfer
{"title":"在单个FPGA上实现多个应用的硬件加速","authors":"Yidi Liu, Benjamin Carrión Schäfer","doi":"10.1109/FPT.2014.7082797","DOIUrl":null,"url":null,"abstract":"This works presents a fast and efficient method to map multiple computationally intensive kernels onto the same FPGA given the FPGA area and communication bandwidth constraint. FPGAs have grown to a size where multiple applications can now be mapped onto a single device. It is therefore important to develop methods than can efficiently decide which kernels of all of the applications under consideration should be mapped onto the FPGA in order to maximize the total system acceleration. Our method shows very good results compared to a standard genetic algorithm, which is often used for multi-objective optimization problems and against the optimal solution obtained using an exhaustive search method. Experimental results show that our method is very scalable and extremely fast.","PeriodicalId":6877,"journal":{"name":"2014 International Conference on Field-Programmable Technology (FPT)","volume":"28 12 1","pages":"284-285"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"HW acceleration of multiple applications on a single FPGA\",\"authors\":\"Yidi Liu, Benjamin Carrión Schäfer\",\"doi\":\"10.1109/FPT.2014.7082797\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This works presents a fast and efficient method to map multiple computationally intensive kernels onto the same FPGA given the FPGA area and communication bandwidth constraint. FPGAs have grown to a size where multiple applications can now be mapped onto a single device. It is therefore important to develop methods than can efficiently decide which kernels of all of the applications under consideration should be mapped onto the FPGA in order to maximize the total system acceleration. Our method shows very good results compared to a standard genetic algorithm, which is often used for multi-objective optimization problems and against the optimal solution obtained using an exhaustive search method. Experimental results show that our method is very scalable and extremely fast.\",\"PeriodicalId\":6877,\"journal\":{\"name\":\"2014 International Conference on Field-Programmable Technology (FPT)\",\"volume\":\"28 12 1\",\"pages\":\"284-285\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Conference on Field-Programmable Technology (FPT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FPT.2014.7082797\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Field-Programmable Technology (FPT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FPT.2014.7082797","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在给定FPGA面积和通信带宽限制的情况下,提出了一种快速有效地将多个计算密集型内核映射到同一FPGA上的方法。fpga已经发展到可以将多个应用程序映射到单个器件上的规模。因此,重要的是开发一种方法,能够有效地决定所有应用程序的哪些内核应该映射到FPGA上,以最大限度地提高系统的总加速度。与标准遗传算法相比,我们的方法显示出非常好的结果,标准遗传算法通常用于多目标优化问题,并针对使用穷举搜索方法获得的最优解。实验结果表明,该方法具有很强的可扩展性和极快的速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
HW acceleration of multiple applications on a single FPGA
This works presents a fast and efficient method to map multiple computationally intensive kernels onto the same FPGA given the FPGA area and communication bandwidth constraint. FPGAs have grown to a size where multiple applications can now be mapped onto a single device. It is therefore important to develop methods than can efficiently decide which kernels of all of the applications under consideration should be mapped onto the FPGA in order to maximize the total system acceleration. Our method shows very good results compared to a standard genetic algorithm, which is often used for multi-objective optimization problems and against the optimal solution obtained using an exhaustive search method. Experimental results show that our method is very scalable and extremely fast.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Message from the General Chair and Program Co-Chairs Accelerator-in-Switch: A Novel Cooperation Framework for FPGAs and GPUs FPGA Accelerated HPC and Data Analytics Novel Neural Network Applications on New Python Enabled Platforms High-level synthesis - the right side of history
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1