{"title":"铝、硅和铁中纳米粒子和空腔的表面应力计算:压力的影响和 Young-Laplace 方程的有效性","authors":"Laurent Pizzagalli, Marie-Laure David","doi":"10.1186/s41313-021-00028-2","DOIUrl":null,"url":null,"abstract":"<div><p>This study is dedicated to the determination of the surface energy and stress of nanoparticles and cavities in presence of pressure, and to the evaluation of the accuracy of the Young-Laplace equation for these systems. Procedures are proposed to extract those quantities from classical interatomic potentials calculations, carried out for three distinct materials: aluminum, silicon, and iron. Our investigations first reveal the increase of surface energy and stress of nanoparticles as a function of pressure. On the contrary we find a significant decrease for cavities, which can be correlated to the initiation of plastic deformation at high pressure. We show that the Young-Laplace equation should not be used for quantitative predictions when the Laplace pressure is computed with a constant surface energy value, as usually done in the literature. Instead, a significant improvement is obtained by using the diameter and pressure-dependent surface stress. In that case, the Young-Laplace equation can be used with a reasonable accuracy at low pressures for nanoparticles with diameters as low as 4 nm, and 2 nm for cavities. At lower sizes, or high pressures, a severely limiting factor is the challenge of extracting meaningful surface stress values.</p></div>","PeriodicalId":693,"journal":{"name":"Materials Theory","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jmsh.springeropen.com/counter/pdf/10.1186/s41313-021-00028-2","citationCount":"0","resultStr":"{\"title\":\"Surface stress calculations for nanoparticles and cavities in aluminum, silicon, and iron: influence of pressure and validity of the Young-Laplace equation\",\"authors\":\"Laurent Pizzagalli, Marie-Laure David\",\"doi\":\"10.1186/s41313-021-00028-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study is dedicated to the determination of the surface energy and stress of nanoparticles and cavities in presence of pressure, and to the evaluation of the accuracy of the Young-Laplace equation for these systems. Procedures are proposed to extract those quantities from classical interatomic potentials calculations, carried out for three distinct materials: aluminum, silicon, and iron. Our investigations first reveal the increase of surface energy and stress of nanoparticles as a function of pressure. On the contrary we find a significant decrease for cavities, which can be correlated to the initiation of plastic deformation at high pressure. We show that the Young-Laplace equation should not be used for quantitative predictions when the Laplace pressure is computed with a constant surface energy value, as usually done in the literature. Instead, a significant improvement is obtained by using the diameter and pressure-dependent surface stress. In that case, the Young-Laplace equation can be used with a reasonable accuracy at low pressures for nanoparticles with diameters as low as 4 nm, and 2 nm for cavities. At lower sizes, or high pressures, a severely limiting factor is the challenge of extracting meaningful surface stress values.</p></div>\",\"PeriodicalId\":693,\"journal\":{\"name\":\"Materials Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://jmsh.springeropen.com/counter/pdf/10.1186/s41313-021-00028-2\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Theory\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s41313-021-00028-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Theory","FirstCategoryId":"1","ListUrlMain":"https://link.springer.com/article/10.1186/s41313-021-00028-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Surface stress calculations for nanoparticles and cavities in aluminum, silicon, and iron: influence of pressure and validity of the Young-Laplace equation
This study is dedicated to the determination of the surface energy and stress of nanoparticles and cavities in presence of pressure, and to the evaluation of the accuracy of the Young-Laplace equation for these systems. Procedures are proposed to extract those quantities from classical interatomic potentials calculations, carried out for three distinct materials: aluminum, silicon, and iron. Our investigations first reveal the increase of surface energy and stress of nanoparticles as a function of pressure. On the contrary we find a significant decrease for cavities, which can be correlated to the initiation of plastic deformation at high pressure. We show that the Young-Laplace equation should not be used for quantitative predictions when the Laplace pressure is computed with a constant surface energy value, as usually done in the literature. Instead, a significant improvement is obtained by using the diameter and pressure-dependent surface stress. In that case, the Young-Laplace equation can be used with a reasonable accuracy at low pressures for nanoparticles with diameters as low as 4 nm, and 2 nm for cavities. At lower sizes, or high pressures, a severely limiting factor is the challenge of extracting meaningful surface stress values.
期刊介绍:
Journal of Materials Science: Materials Theory publishes all areas of theoretical materials science and related computational methods. The scope covers mechanical, physical and chemical problems in metals and alloys, ceramics, polymers, functional and biological materials at all scales and addresses the structure, synthesis and properties of materials. Proposing novel theoretical concepts, models, and/or mathematical and computational formalisms to advance state-of-the-art technology is critical for submission to the Journal of Materials Science: Materials Theory.
The journal highly encourages contributions focusing on data-driven research, materials informatics, and the integration of theory and data analysis as new ways to predict, design, and conceptualize materials behavior.