最低吸积的原行星盘与x射线光蒸发驱动它们最终扩散一致

Q1 Earth and Planetary Sciences Monthly Notices of the Royal Astronomical Society: Letters Pub Date : 2023-08-24 DOI:10.1093/mnrasl/slad123
B. Ercolano, G. Picogna, Kristina Monsch
{"title":"最低吸积的原行星盘与x射线光蒸发驱动它们最终扩散一致","authors":"B. Ercolano, G. Picogna, Kristina Monsch","doi":"10.1093/mnrasl/slad123","DOIUrl":null,"url":null,"abstract":"\n Photoevaporation from high energy stellar radiation has been thought to drive the dispersal of protoplanetary discs. Different theoretical models have been proposed, but their predictions diverge in terms of the rate and modality at which discs lose their mass, with significant implications for the formation and evolution of planets. In this paper we use disc population synthesis models to interpret recent observations of the lowest accreting protoplanetary discs, comparing predictions from EUV-driven, FUV-driven and X-ray driven photoevaporation models. We show that the recent observational data of stars with low accretion rates (low accretors) point to X-ray photoevaporation as the preferred mechanism driving the final stages of protoplanetary disc dispersal. We also show that the distribution of accretion rates predicted by the X-ray photoevaporation model is consistent with observations, while other dispersal models tested here are clearly ruled out.","PeriodicalId":18951,"journal":{"name":"Monthly Notices of the Royal Astronomical Society: Letters","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lowest accreting protoplanetary discs consistent with X-ray photoevaporation driving their final dispersal\",\"authors\":\"B. Ercolano, G. Picogna, Kristina Monsch\",\"doi\":\"10.1093/mnrasl/slad123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Photoevaporation from high energy stellar radiation has been thought to drive the dispersal of protoplanetary discs. Different theoretical models have been proposed, but their predictions diverge in terms of the rate and modality at which discs lose their mass, with significant implications for the formation and evolution of planets. In this paper we use disc population synthesis models to interpret recent observations of the lowest accreting protoplanetary discs, comparing predictions from EUV-driven, FUV-driven and X-ray driven photoevaporation models. We show that the recent observational data of stars with low accretion rates (low accretors) point to X-ray photoevaporation as the preferred mechanism driving the final stages of protoplanetary disc dispersal. We also show that the distribution of accretion rates predicted by the X-ray photoevaporation model is consistent with observations, while other dispersal models tested here are clearly ruled out.\",\"PeriodicalId\":18951,\"journal\":{\"name\":\"Monthly Notices of the Royal Astronomical Society: Letters\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Monthly Notices of the Royal Astronomical Society: Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/mnrasl/slad123\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monthly Notices of the Royal Astronomical Society: Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/mnrasl/slad123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 0

摘要

高能恒星辐射的光蒸发被认为是驱动原行星盘扩散的原因。人们提出了不同的理论模型,但他们的预测在盘状物失去质量的速度和方式方面存在分歧,这对行星的形成和演化具有重要意义。在本文中,我们使用盘族综合模型来解释最近最低吸积原行星盘的观测结果,并比较了euv驱动、fuv驱动和x射线驱动的光蒸发模型的预测结果。我们表明,最近对低吸积率恒星(低吸积体)的观测数据表明,x射线光蒸发是驱动原行星盘扩散最后阶段的首选机制。我们还表明,x射线光蒸发模型预测的吸积率分布与观测结果一致,而这里测试的其他分散模型显然被排除在外。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Lowest accreting protoplanetary discs consistent with X-ray photoevaporation driving their final dispersal
Photoevaporation from high energy stellar radiation has been thought to drive the dispersal of protoplanetary discs. Different theoretical models have been proposed, but their predictions diverge in terms of the rate and modality at which discs lose their mass, with significant implications for the formation and evolution of planets. In this paper we use disc population synthesis models to interpret recent observations of the lowest accreting protoplanetary discs, comparing predictions from EUV-driven, FUV-driven and X-ray driven photoevaporation models. We show that the recent observational data of stars with low accretion rates (low accretors) point to X-ray photoevaporation as the preferred mechanism driving the final stages of protoplanetary disc dispersal. We also show that the distribution of accretion rates predicted by the X-ray photoevaporation model is consistent with observations, while other dispersal models tested here are clearly ruled out.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Monthly Notices of the Royal Astronomical Society: Letters
Monthly Notices of the Royal Astronomical Society: Letters Earth and Planetary Sciences-Space and Planetary Science
CiteScore
8.80
自引率
0.00%
发文量
136
期刊介绍: For papers that merit urgent publication, MNRAS Letters, the online section of Monthly Notices of the Royal Astronomical Society, publishes short, topical and significant research in all fields of astronomy. Letters should be self-contained and describe the results of an original study whose rapid publication might be expected to have a significant influence on the subsequent development of research in the associated subject area. The 5-page limit must be respected. Authors are required to state their reasons for seeking publication in the form of a Letter when submitting their manuscript.
期刊最新文献
A tight N/O–potential relation in star-forming galaxies Constraining fundamental constants with fast radio bursts: Unveiling the role of energy scale TeV afterglow from GRB 221009A: photohadronic origin? Emirical calibration for helium abundance determinations in active galactic nuclei One-sided Hα excess before the first pericentre passage in galaxy Pairs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1