厚度变化作为钢/TP-FRPC接头感应焊工艺控制参数的适用性

IF 1.8 Q3 ENGINEERING, MANUFACTURING Advanced Manufacturing: Polymer & Composites Science Pub Date : 2019-04-02 DOI:10.1080/20550340.2019.1592869
S. Weidmann, M. Hümbert, P. Mitschang
{"title":"厚度变化作为钢/TP-FRPC接头感应焊工艺控制参数的适用性","authors":"S. Weidmann, M. Hümbert, P. Mitschang","doi":"10.1080/20550340.2019.1592869","DOIUrl":null,"url":null,"abstract":"Abstract This study examines the influence of thickness change on bond strength of welded hybrid joints of physically surface-treated steel sheets and glass fiber reinforced polyamide 6. The quasi-static, discontinuous induction welding was used as joining method. The steel sheets were either treated by a parallel line shaped laser structuring, which is perpendicular to the load direction and has a line distance of 0.3 mm or 0.6 mm or by a compressed air blasting. Furthermore, the influence of joining temperature on bond strength was examined as a comparison. In both cases bond strength was determined using tensile shear tests according to DIN 1465. In addition, the void content in the laminate and in the joining zone was investigated by cross section images. A time-temperature-thickness change diagram was developed to gain insight into the processes during welding. Based on these findings, it can be stated that thickness change is suitable for process control and as a quality assurance feature in hybrid induction welding. Graphical Abstract","PeriodicalId":7243,"journal":{"name":"Advanced Manufacturing: Polymer & Composites Science","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2019-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Suitability of thickness change as process control parameter for induction welding of steel/TP-FRPC joints\",\"authors\":\"S. Weidmann, M. Hümbert, P. Mitschang\",\"doi\":\"10.1080/20550340.2019.1592869\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This study examines the influence of thickness change on bond strength of welded hybrid joints of physically surface-treated steel sheets and glass fiber reinforced polyamide 6. The quasi-static, discontinuous induction welding was used as joining method. The steel sheets were either treated by a parallel line shaped laser structuring, which is perpendicular to the load direction and has a line distance of 0.3 mm or 0.6 mm or by a compressed air blasting. Furthermore, the influence of joining temperature on bond strength was examined as a comparison. In both cases bond strength was determined using tensile shear tests according to DIN 1465. In addition, the void content in the laminate and in the joining zone was investigated by cross section images. A time-temperature-thickness change diagram was developed to gain insight into the processes during welding. Based on these findings, it can be stated that thickness change is suitable for process control and as a quality assurance feature in hybrid induction welding. Graphical Abstract\",\"PeriodicalId\":7243,\"journal\":{\"name\":\"Advanced Manufacturing: Polymer & Composites Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2019-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Manufacturing: Polymer & Composites Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/20550340.2019.1592869\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Manufacturing: Polymer & Composites Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/20550340.2019.1592869","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 3

摘要

摘要研究了厚度变化对物理表面处理钢板与玻璃纤维增强聚酰胺6复合焊接接头结合强度的影响。采用准静态、不连续感应焊接作为连接方法。钢板采用垂直于载荷方向且线距为0.3 mm或0.6 mm的平行线形激光结构或压缩空气爆破处理。此外,还比较了连接温度对粘结强度的影响。在这两种情况下,根据DIN 1465使用拉伸剪切试验来确定粘结强度。此外,还利用截面图像研究了层板和连接区的空洞含量。开发了时间-温度-厚度变化图,以深入了解焊接过程。基于这些发现,厚度变化适用于混合感应焊的过程控制和质量保证。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Suitability of thickness change as process control parameter for induction welding of steel/TP-FRPC joints
Abstract This study examines the influence of thickness change on bond strength of welded hybrid joints of physically surface-treated steel sheets and glass fiber reinforced polyamide 6. The quasi-static, discontinuous induction welding was used as joining method. The steel sheets were either treated by a parallel line shaped laser structuring, which is perpendicular to the load direction and has a line distance of 0.3 mm or 0.6 mm or by a compressed air blasting. Furthermore, the influence of joining temperature on bond strength was examined as a comparison. In both cases bond strength was determined using tensile shear tests according to DIN 1465. In addition, the void content in the laminate and in the joining zone was investigated by cross section images. A time-temperature-thickness change diagram was developed to gain insight into the processes during welding. Based on these findings, it can be stated that thickness change is suitable for process control and as a quality assurance feature in hybrid induction welding. Graphical Abstract
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.00
自引率
0.00%
发文量
11
审稿时长
16 weeks
期刊最新文献
Mitigating void growth in out-of-autoclave prepreg processing using a semi-permeable membrane to maintain resin pressure Analysis and development of a brazing method to weld carbon fiber-reinforced poly ether ketone ketone with amorphous PEKK In-situ analysis of cocured scarf patch repairs Bending properties of structural foams manufactured in a hot press process Experimental validation of co-cure process of honeycomb sandwich structures simulation: adhesive fillet shape and bond-line porosity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1