{"title":"点源多孔压电复合材料结构中SH波的格林函数表征方法","authors":"S. Karmakar, S. A. Sahu, S. Nirwal","doi":"10.22034/JSM.2019.583053.1372","DOIUrl":null,"url":null,"abstract":"An approach of Green’s function is adopted to solve the inhomogeneous linear differential equations representing wave equations in piezo-composite materials. In particular, transference of horizontally polarised shear (SH) waves is considered in bedded structure comprising of porous-piezo electric layer lying over a heterogeneous half-space. Propagation of SH-waves is considered to be influenced by point source, situated in the heterogeneous substrate. A closed form analytical solution is obtained to establish the dispersion relation. Remarkable influence of different parameters (like elastic constant, piezoelectric constant, heterogeneity parameter, initial stress and layers thickness) on the phase and group velocity are shown graphically. Moreover, a special case of present study is shown by replacing the porous piezoelectric material with piezoelectric material. Some numerical examples are illustrated by taking the material constants of Lead Zirconate Titanate (PZT-1, PZT-5H and PZT-7) for the porous piezoelectric layer where the phase velocity of SH waves is high rather than that of piezoelectric layer.","PeriodicalId":17126,"journal":{"name":"Journal of Solid Mechanics and Materials Engineering","volume":"96 2 1","pages":"72-89"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Method of Green’s Function for Characterization of SH Waves in Porous-Piezo Composite Structure with a Point Source\",\"authors\":\"S. Karmakar, S. A. Sahu, S. Nirwal\",\"doi\":\"10.22034/JSM.2019.583053.1372\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An approach of Green’s function is adopted to solve the inhomogeneous linear differential equations representing wave equations in piezo-composite materials. In particular, transference of horizontally polarised shear (SH) waves is considered in bedded structure comprising of porous-piezo electric layer lying over a heterogeneous half-space. Propagation of SH-waves is considered to be influenced by point source, situated in the heterogeneous substrate. A closed form analytical solution is obtained to establish the dispersion relation. Remarkable influence of different parameters (like elastic constant, piezoelectric constant, heterogeneity parameter, initial stress and layers thickness) on the phase and group velocity are shown graphically. Moreover, a special case of present study is shown by replacing the porous piezoelectric material with piezoelectric material. Some numerical examples are illustrated by taking the material constants of Lead Zirconate Titanate (PZT-1, PZT-5H and PZT-7) for the porous piezoelectric layer where the phase velocity of SH waves is high rather than that of piezoelectric layer.\",\"PeriodicalId\":17126,\"journal\":{\"name\":\"Journal of Solid Mechanics and Materials Engineering\",\"volume\":\"96 2 1\",\"pages\":\"72-89\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Solid Mechanics and Materials Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22034/JSM.2019.583053.1372\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Solid Mechanics and Materials Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22034/JSM.2019.583053.1372","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Method of Green’s Function for Characterization of SH Waves in Porous-Piezo Composite Structure with a Point Source
An approach of Green’s function is adopted to solve the inhomogeneous linear differential equations representing wave equations in piezo-composite materials. In particular, transference of horizontally polarised shear (SH) waves is considered in bedded structure comprising of porous-piezo electric layer lying over a heterogeneous half-space. Propagation of SH-waves is considered to be influenced by point source, situated in the heterogeneous substrate. A closed form analytical solution is obtained to establish the dispersion relation. Remarkable influence of different parameters (like elastic constant, piezoelectric constant, heterogeneity parameter, initial stress and layers thickness) on the phase and group velocity are shown graphically. Moreover, a special case of present study is shown by replacing the porous piezoelectric material with piezoelectric material. Some numerical examples are illustrated by taking the material constants of Lead Zirconate Titanate (PZT-1, PZT-5H and PZT-7) for the porous piezoelectric layer where the phase velocity of SH waves is high rather than that of piezoelectric layer.