电信工作负载的网络感知容器编排

Q1 Computer Science IEEE Cloud Computing Pub Date : 2022-07-01 DOI:10.1109/CLOUD55607.2022.00063
Kavya Govindarajan, Chander Govindarajan, Mudit Verma
{"title":"电信工作负载的网络感知容器编排","authors":"Kavya Govindarajan, Chander Govindarajan, Mudit Verma","doi":"10.1109/CLOUD55607.2022.00063","DOIUrl":null,"url":null,"abstract":"In recent years, with the maturation of container orchestration platforms like Kubernetes, containers are now becoming the default way to deploy cloud-native applications, designed as microservices, on public and private clouds. These trends have also spread to the field of Telecommunications, boosted by the onset of 5G. Network functions processing millions of packets per second, earlier run as proprietary physical boxes, are now being realized as disaggregated container based microservices (CNFs) running on commodity clusters managed by orchestrators, like Kubernetes, on Telco clouds. While container orchestrators have evolved to meet the needs of enterprise applications, Telco workloads still remain a second class citizen, as the orchestrator is presently unaware of the networking needs of CNFs and cannot guarantee QoS of network intensive functions. In this work, we examine orchestration of network sensitive functions and identify the key networking requirements of containerized Telco workloads from the orchestration platform. We design and propose NACO - Network Aware Container Orchestration, a minimal, cloud-native and scalable extension to the Kubernetes platform to address these requirements and provide first class lifecycle management of CNFs used in Telco workloads. We implement a prototype of the system and demonstrate that we can achieve network aware container orchestration with minimal operation times.","PeriodicalId":54281,"journal":{"name":"IEEE Cloud Computing","volume":"2012 1","pages":"397-406"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Network Aware Container Orchestration for Telco Workloads\",\"authors\":\"Kavya Govindarajan, Chander Govindarajan, Mudit Verma\",\"doi\":\"10.1109/CLOUD55607.2022.00063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, with the maturation of container orchestration platforms like Kubernetes, containers are now becoming the default way to deploy cloud-native applications, designed as microservices, on public and private clouds. These trends have also spread to the field of Telecommunications, boosted by the onset of 5G. Network functions processing millions of packets per second, earlier run as proprietary physical boxes, are now being realized as disaggregated container based microservices (CNFs) running on commodity clusters managed by orchestrators, like Kubernetes, on Telco clouds. While container orchestrators have evolved to meet the needs of enterprise applications, Telco workloads still remain a second class citizen, as the orchestrator is presently unaware of the networking needs of CNFs and cannot guarantee QoS of network intensive functions. In this work, we examine orchestration of network sensitive functions and identify the key networking requirements of containerized Telco workloads from the orchestration platform. We design and propose NACO - Network Aware Container Orchestration, a minimal, cloud-native and scalable extension to the Kubernetes platform to address these requirements and provide first class lifecycle management of CNFs used in Telco workloads. We implement a prototype of the system and demonstrate that we can achieve network aware container orchestration with minimal operation times.\",\"PeriodicalId\":54281,\"journal\":{\"name\":\"IEEE Cloud Computing\",\"volume\":\"2012 1\",\"pages\":\"397-406\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Cloud Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CLOUD55607.2022.00063\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Cloud Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CLOUD55607.2022.00063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 2

摘要

近年来,随着Kubernetes等容器编排平台的成熟,容器现在成为在公共云和私有云上部署云原生应用程序的默认方式,这些应用程序被设计为微服务。在5G的推动下,这些趋势也蔓延到了电信领域。网络功能每秒处理数百万个数据包,以前作为专有的物理盒运行,现在作为基于分解容器的微服务(cnf)运行在由编排器(如Kubernetes)管理的商品集群上,在电信云上实现。虽然容器编排器已经发展到可以满足企业应用程序的需求,但电信工作负载仍然是二等公民,因为编排器目前还不知道cnf的网络需求,也不能保证网络密集型功能的QoS。在这项工作中,我们检查了网络敏感功能的编排,并确定了来自编排平台的容器化电信工作负载的关键网络需求。我们设计并提出了NACO——网络感知容器编排,这是Kubernetes平台的一个最小的、云原生的、可扩展的扩展,以满足这些需求,并为电信工作负载中使用的cnf提供一流的生命周期管理。我们实现了系统的原型,并演示了我们可以用最少的操作时间实现网络感知的容器编排。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Network Aware Container Orchestration for Telco Workloads
In recent years, with the maturation of container orchestration platforms like Kubernetes, containers are now becoming the default way to deploy cloud-native applications, designed as microservices, on public and private clouds. These trends have also spread to the field of Telecommunications, boosted by the onset of 5G. Network functions processing millions of packets per second, earlier run as proprietary physical boxes, are now being realized as disaggregated container based microservices (CNFs) running on commodity clusters managed by orchestrators, like Kubernetes, on Telco clouds. While container orchestrators have evolved to meet the needs of enterprise applications, Telco workloads still remain a second class citizen, as the orchestrator is presently unaware of the networking needs of CNFs and cannot guarantee QoS of network intensive functions. In this work, we examine orchestration of network sensitive functions and identify the key networking requirements of containerized Telco workloads from the orchestration platform. We design and propose NACO - Network Aware Container Orchestration, a minimal, cloud-native and scalable extension to the Kubernetes platform to address these requirements and provide first class lifecycle management of CNFs used in Telco workloads. We implement a prototype of the system and demonstrate that we can achieve network aware container orchestration with minimal operation times.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Cloud Computing
IEEE Cloud Computing Computer Science-Computer Networks and Communications
CiteScore
11.20
自引率
0.00%
发文量
0
期刊介绍: Cessation. IEEE Cloud Computing is committed to the timely publication of peer-reviewed articles that provide innovative research ideas, applications results, and case studies in all areas of cloud computing. Topics relating to novel theory, algorithms, performance analyses and applications of techniques are covered. More specifically: Cloud software, Cloud security, Trade-offs between privacy and utility of cloud, Cloud in the business environment, Cloud economics, Cloud governance, Migrating to the cloud, Cloud standards, Development tools, Backup and recovery, Interoperability, Applications management, Data analytics, Communications protocols, Mobile cloud, Private clouds, Liability issues for data loss on clouds, Data integration, Big data, Cloud education, Cloud skill sets, Cloud energy consumption, The architecture of cloud computing, Applications in commerce, education, and industry, Infrastructure as a Service (IaaS), Platform as a Service (PaaS), Software as a Service (SaaS), Business Process as a Service (BPaaS)
期刊最新文献
Different in different ways: A network-analysis approach to voice and prosody in Autism Spectrum Disorder. Layered Contention Mitigation for Cloud Storage Towards More Effective and Explainable Fault Management Using Cross-Layer Service Topology Bypass Container Overlay Networks with Transparent BPF-driven Socket Replacement Event-Driven Approach for Monitoring and Orchestration of Cloud and Edge-Enabled IoT Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1