降低聚合物易燃性的添加剂

I. Zaripov, I. Vikhareva, E. A. Buylova, T. V. Berestova, A. Mazitova
{"title":"降低聚合物易燃性的添加剂","authors":"I. Zaripov, I. Vikhareva, E. A. Buylova, T. V. Berestova, A. Mazitova","doi":"10.15828/2075-8545-2022-14-2-156-161","DOIUrl":null,"url":null,"abstract":": Introduction. This review article provides data on additives used to reduce the flammability of polymer compositions. It is shown that not individual substances are used for this purpose, but their mixtures, including flame retardants, synergists, and stabilizers. The principle of operation of flame retardants is that when the appropriate degree of concentration of flame retardants in the material is reached, they do not allow it to burn without the presence of an ignition source. Under the influence of fire on the processed material, various chemical and physical processes occur in it, preventing the flame from flaring up. Main part. The advantages and disadvantages of the main flame retardants currently used, which include antimony compounds, halogen-containing compounds, phosphorus-containing substances, as well as aluminum and magnesium hydroxides, are analyzed. Various mechanisms for slowing down combustion processes when flame retardants are used are considered. It has been shown that bromine-containing flame retardants are much more effective than chlorine-containing ones. They decompose in a narrow temperature range. In addi-tion, plastics containing bromine compounds as flame retardants are easily recycled due to the high thermal stability of such flame retardants. Phosphorus-containing compounds have a plasticizing ability and increase the fire resistance of plastic compounds. The action in the condensed phase is that during the decomposition of the flame retardant, phosphoric acid residues are formed, which act as dehydrating agents, contributing to the formation of carbonized structures. In this case, an aerosol can also be formed, which contributes to the deactivation of radicals due to the wall effect. Of particular interest are compounds containing halogen and phosphorus. The advantages of these compounds are as follows: by splitting off halogen radicals during decomposition, they deactivate active radicals; contribute to the formation of carbonized structures. Metal hydroxides decompose under the influence of high temperatures with the release of water. The decomposition reaction is endothermic, resulting in cooling of the substrate to temperatures below the flash point. The formation of water contributes to the dilution of combustible gases released during decomposition, weakens the effect of oxygen and reduces the rate of combustion. The effectiveness of hydroxides is directly proportional to their content in the polymer. The greatest efficiency is observed when aluminum hydroxide is introduced into oxygen-containing polymers (polyethylene terephthalate, polybutylene terephthalate, polyamide). Magnesium hydroxide is more expensive than aluminum hydroxide, but has a higher heat resistance (up to 300 о C). Conclusion. Thus, among the listed flame retardants, aluminum and magnesium hydroxides occupy the first place in terms of the volume of use (more than 40% of the total volume of flame retardants). This is due to their low cost, manufacturability of their application and environmental safety. A well-chosen metal hydroxide system produces a low-cost non-combustible material with little fumes from decomposition. Therefore, the use of metal hydroxides as flame retardants is constantly increasing.","PeriodicalId":43938,"journal":{"name":"Nanotechnologies in Construction-A Scientific Internet-Journal","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2022-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Additives to reduce the flammability of polymers\",\"authors\":\"I. Zaripov, I. Vikhareva, E. A. Buylova, T. V. Berestova, A. Mazitova\",\"doi\":\"10.15828/2075-8545-2022-14-2-156-161\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": Introduction. This review article provides data on additives used to reduce the flammability of polymer compositions. It is shown that not individual substances are used for this purpose, but their mixtures, including flame retardants, synergists, and stabilizers. The principle of operation of flame retardants is that when the appropriate degree of concentration of flame retardants in the material is reached, they do not allow it to burn without the presence of an ignition source. Under the influence of fire on the processed material, various chemical and physical processes occur in it, preventing the flame from flaring up. Main part. The advantages and disadvantages of the main flame retardants currently used, which include antimony compounds, halogen-containing compounds, phosphorus-containing substances, as well as aluminum and magnesium hydroxides, are analyzed. Various mechanisms for slowing down combustion processes when flame retardants are used are considered. It has been shown that bromine-containing flame retardants are much more effective than chlorine-containing ones. They decompose in a narrow temperature range. In addi-tion, plastics containing bromine compounds as flame retardants are easily recycled due to the high thermal stability of such flame retardants. Phosphorus-containing compounds have a plasticizing ability and increase the fire resistance of plastic compounds. The action in the condensed phase is that during the decomposition of the flame retardant, phosphoric acid residues are formed, which act as dehydrating agents, contributing to the formation of carbonized structures. In this case, an aerosol can also be formed, which contributes to the deactivation of radicals due to the wall effect. Of particular interest are compounds containing halogen and phosphorus. The advantages of these compounds are as follows: by splitting off halogen radicals during decomposition, they deactivate active radicals; contribute to the formation of carbonized structures. Metal hydroxides decompose under the influence of high temperatures with the release of water. The decomposition reaction is endothermic, resulting in cooling of the substrate to temperatures below the flash point. The formation of water contributes to the dilution of combustible gases released during decomposition, weakens the effect of oxygen and reduces the rate of combustion. The effectiveness of hydroxides is directly proportional to their content in the polymer. The greatest efficiency is observed when aluminum hydroxide is introduced into oxygen-containing polymers (polyethylene terephthalate, polybutylene terephthalate, polyamide). Magnesium hydroxide is more expensive than aluminum hydroxide, but has a higher heat resistance (up to 300 о C). Conclusion. Thus, among the listed flame retardants, aluminum and magnesium hydroxides occupy the first place in terms of the volume of use (more than 40% of the total volume of flame retardants). This is due to their low cost, manufacturability of their application and environmental safety. A well-chosen metal hydroxide system produces a low-cost non-combustible material with little fumes from decomposition. Therefore, the use of metal hydroxides as flame retardants is constantly increasing.\",\"PeriodicalId\":43938,\"journal\":{\"name\":\"Nanotechnologies in Construction-A Scientific Internet-Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanotechnologies in Construction-A Scientific Internet-Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15828/2075-8545-2022-14-2-156-161\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnologies in Construction-A Scientific Internet-Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15828/2075-8545-2022-14-2-156-161","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 2

摘要

:介绍。本文综述了用于降低聚合物组合物易燃性的添加剂的数据。结果表明,用于此目的的不是单独的物质,而是它们的混合物,包括阻燃剂、增效剂和稳定剂。阻燃剂的工作原理是,当材料中的阻燃剂达到适当的浓度时,在没有点火源的情况下,它们不允许它燃烧。被加工材料在火的作用下,在其内部发生各种化学和物理过程,防止火焰燃烧起来。主要部分。分析了目前使用的主要阻燃剂的优缺点,包括锑化合物、含卤化合物、含磷物质以及氢氧铝和氢氧镁。当使用阻燃剂时,考虑了减缓燃烧过程的各种机制。研究表明,含溴阻燃剂比含氯阻燃剂的阻燃效果要好得多。它们在很窄的温度范围内分解。此外,含有溴化合物作为阻燃剂的塑料,由于这种阻燃剂的高热稳定性,很容易回收。含磷化合物具有塑化能力,提高塑料化合物的耐火性。缩合相的作用是阻燃剂在分解过程中形成磷酸残渣,磷酸残渣起到脱水剂的作用,促成炭化结构的形成。在这种情况下,还可以形成气溶胶,由于壁效应,它有助于自由基的失活。特别令人感兴趣的是含有卤素和磷的化合物。这些化合物的优点是:通过在分解过程中分裂卤素自由基,使活性自由基失活;有助于碳化结构的形成。金属氢氧化物在高温的影响下随着水的释放而分解。分解反应是吸热的,导致基材冷却到闪点以下的温度。水的形成有助于稀释分解过程中释放的可燃气体,削弱氧气的作用,降低燃烧速度。氢氧化物的有效性与它们在聚合物中的含量成正比。当氢氧化铝被引入含氧聚合物(聚对苯二甲酸乙二醇酯、聚对苯二甲酸丁二酯、聚酰胺)时,效率最高。氢氧化镁比氢氧化铝更昂贵,但具有更高的耐热性(高达300℃)。由此可见,在所列阻燃剂中,氢氧化铝和氢氧化镁的使用体积居首位(占阻燃剂总体积的40%以上)。这是由于它们的低成本、可制造性和环境安全性。一个精心选择的金属氢氧化物系统产生低成本的不燃材料,分解产生的烟雾很少。因此,金属氢氧化物作为阻燃剂的使用量不断增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Additives to reduce the flammability of polymers
: Introduction. This review article provides data on additives used to reduce the flammability of polymer compositions. It is shown that not individual substances are used for this purpose, but their mixtures, including flame retardants, synergists, and stabilizers. The principle of operation of flame retardants is that when the appropriate degree of concentration of flame retardants in the material is reached, they do not allow it to burn without the presence of an ignition source. Under the influence of fire on the processed material, various chemical and physical processes occur in it, preventing the flame from flaring up. Main part. The advantages and disadvantages of the main flame retardants currently used, which include antimony compounds, halogen-containing compounds, phosphorus-containing substances, as well as aluminum and magnesium hydroxides, are analyzed. Various mechanisms for slowing down combustion processes when flame retardants are used are considered. It has been shown that bromine-containing flame retardants are much more effective than chlorine-containing ones. They decompose in a narrow temperature range. In addi-tion, plastics containing bromine compounds as flame retardants are easily recycled due to the high thermal stability of such flame retardants. Phosphorus-containing compounds have a plasticizing ability and increase the fire resistance of plastic compounds. The action in the condensed phase is that during the decomposition of the flame retardant, phosphoric acid residues are formed, which act as dehydrating agents, contributing to the formation of carbonized structures. In this case, an aerosol can also be formed, which contributes to the deactivation of radicals due to the wall effect. Of particular interest are compounds containing halogen and phosphorus. The advantages of these compounds are as follows: by splitting off halogen radicals during decomposition, they deactivate active radicals; contribute to the formation of carbonized structures. Metal hydroxides decompose under the influence of high temperatures with the release of water. The decomposition reaction is endothermic, resulting in cooling of the substrate to temperatures below the flash point. The formation of water contributes to the dilution of combustible gases released during decomposition, weakens the effect of oxygen and reduces the rate of combustion. The effectiveness of hydroxides is directly proportional to their content in the polymer. The greatest efficiency is observed when aluminum hydroxide is introduced into oxygen-containing polymers (polyethylene terephthalate, polybutylene terephthalate, polyamide). Magnesium hydroxide is more expensive than aluminum hydroxide, but has a higher heat resistance (up to 300 о C). Conclusion. Thus, among the listed flame retardants, aluminum and magnesium hydroxides occupy the first place in terms of the volume of use (more than 40% of the total volume of flame retardants). This is due to their low cost, manufacturability of their application and environmental safety. A well-chosen metal hydroxide system produces a low-cost non-combustible material with little fumes from decomposition. Therefore, the use of metal hydroxides as flame retardants is constantly increasing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
58.30%
发文量
37
审稿时长
8 weeks
期刊最新文献
Modeling the Kinetics of Cement Composite Processes Modified with Calcium-Containing Additives Investigating the influence of carbon nanotube-based additives on the phase composition of cement mortar during well cementation Composite building materials based on nanomodified cement systems Identification of the stress-strain state and damage of metal structures of building constructions with nanoparticle coatings using the electromagnetic-acoustic method Study of ignition parameters and the thermooxidative degradation of wood in the presence of flame retardants with a bioprotective effect
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1