基于可验证属性的电子病历关键字搜索加密及属性撤销

Zhenhua Liu, Yan Liu, Jing Xu, Baocang Wang
{"title":"基于可验证属性的电子病历关键字搜索加密及属性撤销","authors":"Zhenhua Liu, Yan Liu, Jing Xu, Baocang Wang","doi":"10.6633/IJNS.202009_22(5).15","DOIUrl":null,"url":null,"abstract":"Considering the security requirements of electronic health record (EHR) system, we propose a ciphertext-policy attribute-based encryption scheme, which can support data retrieval, result verification and attribute revocation. In the proposed scheme, we make use of the BLS signature technique to achieve result verification for attribute-based keyword search encryption. In addition, key encrypting key (KEK) tree and re-encryption are utilized to achieve efficient attribute revocation. By giving thorough security analysis, the proposed scheme is proven to achieve: 1) Indistinguishability against selective ciphertext-policy and chosen plaintext attack under the decisional q-parallel bilinear Diffie-Hellman exponent hardness assumption; 2) Indistinguishability against chosen-keyword attack under the bilinear Diffie-Hellman assumption in the random oracle model. Moreover, the performance analysis results demonstrate that the proposed scheme is efficient and practical in electronic health record system.","PeriodicalId":93303,"journal":{"name":"International journal of network security & its applications","volume":"15 1","pages":"845-856"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Verifiable Attribute-based Keyword Search Encryption with Attribute Revocation for Electronic Health Record System\",\"authors\":\"Zhenhua Liu, Yan Liu, Jing Xu, Baocang Wang\",\"doi\":\"10.6633/IJNS.202009_22(5).15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Considering the security requirements of electronic health record (EHR) system, we propose a ciphertext-policy attribute-based encryption scheme, which can support data retrieval, result verification and attribute revocation. In the proposed scheme, we make use of the BLS signature technique to achieve result verification for attribute-based keyword search encryption. In addition, key encrypting key (KEK) tree and re-encryption are utilized to achieve efficient attribute revocation. By giving thorough security analysis, the proposed scheme is proven to achieve: 1) Indistinguishability against selective ciphertext-policy and chosen plaintext attack under the decisional q-parallel bilinear Diffie-Hellman exponent hardness assumption; 2) Indistinguishability against chosen-keyword attack under the bilinear Diffie-Hellman assumption in the random oracle model. Moreover, the performance analysis results demonstrate that the proposed scheme is efficient and practical in electronic health record system.\",\"PeriodicalId\":93303,\"journal\":{\"name\":\"International journal of network security & its applications\",\"volume\":\"15 1\",\"pages\":\"845-856\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of network security & its applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.6633/IJNS.202009_22(5).15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of network security & its applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6633/IJNS.202009_22(5).15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

针对电子健康记录(EHR)系统的安全需求,提出了一种基于密文策略属性的加密方案,该方案支持数据检索、结果验证和属性撤销。在提出的方案中,我们利用BLS签名技术来实现基于属性的关键字搜索加密的结果验证。此外,利用密钥加密密钥(KEK)树和重加密实现了有效的属性撤销。通过深入的安全性分析,证明了该方案在判定q-parallel双线性Diffie-Hellman指数硬度假设下对选择性密文策略和选择明文攻击具有不可分辨性;2)随机oracle模型中双线性Diffie-Hellman假设下对选择关键字攻击的不可分辨性。性能分析结果表明,该方案在电子病历系统中是有效和实用的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Verifiable Attribute-based Keyword Search Encryption with Attribute Revocation for Electronic Health Record System
Considering the security requirements of electronic health record (EHR) system, we propose a ciphertext-policy attribute-based encryption scheme, which can support data retrieval, result verification and attribute revocation. In the proposed scheme, we make use of the BLS signature technique to achieve result verification for attribute-based keyword search encryption. In addition, key encrypting key (KEK) tree and re-encryption are utilized to achieve efficient attribute revocation. By giving thorough security analysis, the proposed scheme is proven to achieve: 1) Indistinguishability against selective ciphertext-policy and chosen plaintext attack under the decisional q-parallel bilinear Diffie-Hellman exponent hardness assumption; 2) Indistinguishability against chosen-keyword attack under the bilinear Diffie-Hellman assumption in the random oracle model. Moreover, the performance analysis results demonstrate that the proposed scheme is efficient and practical in electronic health record system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Invertible Neural Network for Inference Pipeline Anomaly Detection SPDZ-Based Optimistic Fair Multi-Party Computation Detection Exploring the Effectiveness of VPN Architecture in Enhancing Network Security for Mobile Networks: An Investigation Study A NOVEL ALERT CORRELATION TECHNIQUE FOR FILTERING NETWORK ATTACKS Offline Signature Recognition via Convolutional Neural Network and Multiple Classifiers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1