冷电联产试验工厂的能源和火用分析

S. Braccio, H. Phan, N. Tauveron, Nolwenn Le Pierrès
{"title":"冷电联产试验工厂的能源和火用分析","authors":"S. Braccio, H. Phan, N. Tauveron, Nolwenn Le Pierrès","doi":"10.1051/matecconf/202337901005","DOIUrl":null,"url":null,"abstract":"Given the ever-increasing global demand for energy and the attention to be paid to environmental issues and climate change, research is developing more and more about new cold production technologies using renewable sources or recovery. This cooling demand is mainly covered by technologies conventional machines, in particular vapor compression machines, which leads to a high increased demand for electricity. In this context, absorption systems (Herold et al. 2016), lend themselves well to the recovery of heat at low temperature for the production of cold. The advantage of these machines is that the mechanical compression is replaced by a compression thermochemical that uses heat. Although characterized by a low level of maturity technology (TRL 3-4), an even more ambitious study concerns combined systems based on exploitation of thermal energy at low temperatures, in which electrical power and cooling are produced in the same cycle. The present work focuses on the analysis of a pilot installation (Figure 1) of combined production cooling and electricity (CFE) in parallel, from a low temperature source [80 -150°C] and from maximum thermal power of the generator 15 kW.","PeriodicalId":18309,"journal":{"name":"MATEC Web of Conferences","volume":"71 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Energy and exergy analysis of a pilot plant for the co-production of cold and electricity\",\"authors\":\"S. Braccio, H. Phan, N. Tauveron, Nolwenn Le Pierrès\",\"doi\":\"10.1051/matecconf/202337901005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given the ever-increasing global demand for energy and the attention to be paid to environmental issues and climate change, research is developing more and more about new cold production technologies using renewable sources or recovery. This cooling demand is mainly covered by technologies conventional machines, in particular vapor compression machines, which leads to a high increased demand for electricity. In this context, absorption systems (Herold et al. 2016), lend themselves well to the recovery of heat at low temperature for the production of cold. The advantage of these machines is that the mechanical compression is replaced by a compression thermochemical that uses heat. Although characterized by a low level of maturity technology (TRL 3-4), an even more ambitious study concerns combined systems based on exploitation of thermal energy at low temperatures, in which electrical power and cooling are produced in the same cycle. The present work focuses on the analysis of a pilot installation (Figure 1) of combined production cooling and electricity (CFE) in parallel, from a low temperature source [80 -150°C] and from maximum thermal power of the generator 15 kW.\",\"PeriodicalId\":18309,\"journal\":{\"name\":\"MATEC Web of Conferences\",\"volume\":\"71 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MATEC Web of Conferences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/matecconf/202337901005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MATEC Web of Conferences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/matecconf/202337901005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

随着全球对能源需求的不断增长以及对环境问题和气候变化的关注,利用可再生能源或可回收的新型冷生产技术的研究越来越多。这种冷却需求主要由传统机器技术来满足,特别是蒸汽压缩机器,这导致电力需求的大幅增加。在这种情况下,吸收系统(Herold et al. 2016)可以很好地在低温下回收热量以产生冷。这些机器的优点是机械压缩被利用热量的压缩热化学物所取代。尽管其特点是技术成熟度较低(TRL 3-4),但一项更雄心勃勃的研究涉及基于低温热能开采的联合系统,其中电力和冷却在同一循环中产生。目前的工作重点是分析一个试验装置(图1),该装置采用低温源[80 -150°C]和发电机的最大热功率为15 kW,并将生产冷却和电力(CFE)并联。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Energy and exergy analysis of a pilot plant for the co-production of cold and electricity
Given the ever-increasing global demand for energy and the attention to be paid to environmental issues and climate change, research is developing more and more about new cold production technologies using renewable sources or recovery. This cooling demand is mainly covered by technologies conventional machines, in particular vapor compression machines, which leads to a high increased demand for electricity. In this context, absorption systems (Herold et al. 2016), lend themselves well to the recovery of heat at low temperature for the production of cold. The advantage of these machines is that the mechanical compression is replaced by a compression thermochemical that uses heat. Although characterized by a low level of maturity technology (TRL 3-4), an even more ambitious study concerns combined systems based on exploitation of thermal energy at low temperatures, in which electrical power and cooling are produced in the same cycle. The present work focuses on the analysis of a pilot installation (Figure 1) of combined production cooling and electricity (CFE) in parallel, from a low temperature source [80 -150°C] and from maximum thermal power of the generator 15 kW.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
342
审稿时长
6 weeks
期刊介绍: MATEC Web of Conferences is an Open Access publication series dedicated to archiving conference proceedings dealing with all fundamental and applied research aspects related to Materials science, Engineering and Chemistry. All engineering disciplines are covered by the aims and scope of the journal: civil, naval, mechanical, chemical, and electrical engineering as well as nanotechnology and metrology. The journal concerns also all materials in regard to their physical-chemical characterization, implementation, resistance in their environment… Other subdisciples of chemistry, such as analytical chemistry, petrochemistry, organic chemistry…, and even pharmacology, are also welcome. MATEC Web of Conferences offers a wide range of services from the organization of the submission of conference proceedings to the worldwide dissemination of the conference papers. It provides an efficient archiving solution, ensuring maximum exposure and wide indexing of scientific conference proceedings. Proceedings are published under the scientific responsibility of the conference editors.
期刊最新文献
Classification of intracranial hemorrhage (CT) images using CNN-LSTM method and image-based GLCM features Study of pathways to reduce the energy consumption of the CO2 capture process by absorption-regeneration Optimizations of the internal structure of the reel of a double rope winder The Performance and Cost Analysis on Bio Fuel Blends for Internal Combustion Engine Physicochemical studies of composite coatings during accelerated tests for atmospheric corrosion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1