RGB-csb在有限CNN中的精度分析与比较

J. Kong, Yon-sik Lee, Jang Minseok, K. Nam
{"title":"RGB-csb在有限CNN中的精度分析与比较","authors":"J. Kong, Yon-sik Lee, Jang Minseok, K. Nam","doi":"10.13067/JKIECS.2020.15.1.133","DOIUrl":null,"url":null,"abstract":"This paper introduces a method for improving accuracy using the first convolution layer, which is not used in most modified CNN(: Convolution Neural Networks). In CNN, such as GoogLeNet and DenseNet, the first convolution layer uses only the traditional methods(3x3 convolutional computation, batch normalization, and activation functions), replacing this with RGB-csb. In addition to the results of preceding studies that can improve accuracy by applying RGB values to feature maps, the accuracy is compared with existing CNN using a limited number of images. The method proposed in this paper shows that the smaller the number of images, the greater the learning accuracy deviation, the more unstable, but the higher the accuracy on average compared to the existing CNN. As the number of images increases, the difference in accuracy between the existing CNN and the proposed method decreases, and the proposed method does not seem to have a significant effect.","PeriodicalId":22843,"journal":{"name":"The Journal of the Korea institute of electronic communication sciences","volume":"4 1","pages":"133-138"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Accuracy analysis and comparison in limited CNN using RGB-csb\",\"authors\":\"J. Kong, Yon-sik Lee, Jang Minseok, K. Nam\",\"doi\":\"10.13067/JKIECS.2020.15.1.133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a method for improving accuracy using the first convolution layer, which is not used in most modified CNN(: Convolution Neural Networks). In CNN, such as GoogLeNet and DenseNet, the first convolution layer uses only the traditional methods(3x3 convolutional computation, batch normalization, and activation functions), replacing this with RGB-csb. In addition to the results of preceding studies that can improve accuracy by applying RGB values to feature maps, the accuracy is compared with existing CNN using a limited number of images. The method proposed in this paper shows that the smaller the number of images, the greater the learning accuracy deviation, the more unstable, but the higher the accuracy on average compared to the existing CNN. As the number of images increases, the difference in accuracy between the existing CNN and the proposed method decreases, and the proposed method does not seem to have a significant effect.\",\"PeriodicalId\":22843,\"journal\":{\"name\":\"The Journal of the Korea institute of electronic communication sciences\",\"volume\":\"4 1\",\"pages\":\"133-138\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of the Korea institute of electronic communication sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13067/JKIECS.2020.15.1.133\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of the Korea institute of electronic communication sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13067/JKIECS.2020.15.1.133","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种利用第一卷积层提高精度的方法,这种方法在大多数改进的CNN(:卷积神经网络)中是不使用的。在CNN中,如GoogLeNet和DenseNet,第一个卷积层只使用传统的方法(3x3卷积计算、批处理归一化和激活函数),用RGB-csb代替。除了之前的研究结果可以通过将RGB值应用于特征图来提高准确率外,还使用有限数量的图像与现有的CNN进行了精度比较。本文提出的方法表明,图像数量越少,学习精度偏差越大,越不稳定,但与现有的CNN相比,平均精度更高。随着图像数量的增加,现有CNN与本文方法的准确率差异减小,本文方法的效果似乎不明显。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Accuracy analysis and comparison in limited CNN using RGB-csb
This paper introduces a method for improving accuracy using the first convolution layer, which is not used in most modified CNN(: Convolution Neural Networks). In CNN, such as GoogLeNet and DenseNet, the first convolution layer uses only the traditional methods(3x3 convolutional computation, batch normalization, and activation functions), replacing this with RGB-csb. In addition to the results of preceding studies that can improve accuracy by applying RGB values to feature maps, the accuracy is compared with existing CNN using a limited number of images. The method proposed in this paper shows that the smaller the number of images, the greater the learning accuracy deviation, the more unstable, but the higher the accuracy on average compared to the existing CNN. As the number of images increases, the difference in accuracy between the existing CNN and the proposed method decreases, and the proposed method does not seem to have a significant effect.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Join Query Performance Optimization Based on Convergence Indexing Method Multi-Purpose Integrated Training Drone to Prevent Safety Accidents Statistical Analysis of Brain Activity by Musical Stimulation Image Sensor Module for Detecting Spatial Color Temperature in Indoor Environment A Study on the Distribution of Cold Water Occurrence using K-Means Clustering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1