基于梯度的云计算科学工作流调度器

IF 0.7 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Journal of Advanced Computational Intelligence and Intelligent Informatics Pub Date : 2023-01-20 DOI:10.20965/jaciii.2023.p0064
Danjing Wang, Huifang Li, Youwei Zhang, Baihai Zhang
{"title":"基于梯度的云计算科学工作流调度器","authors":"Danjing Wang, Huifang Li, Youwei Zhang, Baihai Zhang","doi":"10.20965/jaciii.2023.p0064","DOIUrl":null,"url":null,"abstract":"It is becoming increasingly attractive to execute workflows in the cloud, as the cloud environment enables scientific applications to utilize elastic computing resources on demand. However, despite being a key to efficiently managing application execution in the cloud, traditional workflow scheduling algorithms face significant challenges in the cloud environment. The gradient-based optimizer (GBO) is a newly proposed evolutionary algorithm with a search engine based on the Newton’s method. It employs a set of vectors to search in the solution space. This study designs a gradient-based scheduler by using GBO for workflow scheduling to minimize the usage costs of workflows under given deadline constraints. Extensive experiments are conducted on well-known scientific workflows of different sizes and types using WorkflowSim. The experimental results show that the proposed scheduling algorithm outperforms five other state-of-the-art algorithms in terms of both the constraint satisfiability and cost optimization, thereby verifying its advantages in addressing workflow scheduling problems.","PeriodicalId":45921,"journal":{"name":"Journal of Advanced Computational Intelligence and Intelligent Informatics","volume":"65 1","pages":"64-73"},"PeriodicalIF":0.7000,"publicationDate":"2023-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gradient-Based Scheduler for Scientific Workflows in Cloud Computing\",\"authors\":\"Danjing Wang, Huifang Li, Youwei Zhang, Baihai Zhang\",\"doi\":\"10.20965/jaciii.2023.p0064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is becoming increasingly attractive to execute workflows in the cloud, as the cloud environment enables scientific applications to utilize elastic computing resources on demand. However, despite being a key to efficiently managing application execution in the cloud, traditional workflow scheduling algorithms face significant challenges in the cloud environment. The gradient-based optimizer (GBO) is a newly proposed evolutionary algorithm with a search engine based on the Newton’s method. It employs a set of vectors to search in the solution space. This study designs a gradient-based scheduler by using GBO for workflow scheduling to minimize the usage costs of workflows under given deadline constraints. Extensive experiments are conducted on well-known scientific workflows of different sizes and types using WorkflowSim. The experimental results show that the proposed scheduling algorithm outperforms five other state-of-the-art algorithms in terms of both the constraint satisfiability and cost optimization, thereby verifying its advantages in addressing workflow scheduling problems.\",\"PeriodicalId\":45921,\"journal\":{\"name\":\"Journal of Advanced Computational Intelligence and Intelligent Informatics\",\"volume\":\"65 1\",\"pages\":\"64-73\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advanced Computational Intelligence and Intelligent Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20965/jaciii.2023.p0064\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Computational Intelligence and Intelligent Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20965/jaciii.2023.p0064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

在云中执行工作流正变得越来越有吸引力,因为云环境使科学应用程序能够按需利用弹性计算资源。然而,尽管传统的工作流调度算法是在云环境中有效管理应用程序执行的关键,但它在云环境中面临着重大挑战。基于梯度的优化器(gradient-based optimizer, GBO)是一种基于牛顿方法的搜索引擎进化算法。它使用一组向量在解空间中搜索。为了在给定的期限约束下最小化工作流的使用成本,本文设计了一个基于梯度的工作流调度程序。利用WorkflowSim对不同规模和类型的知名科学工作流进行了广泛的实验。实验结果表明,本文提出的调度算法在约束可满足性和成本优化方面均优于其他五种最新算法,从而验证了该算法在解决工作流调度问题方面的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Gradient-Based Scheduler for Scientific Workflows in Cloud Computing
It is becoming increasingly attractive to execute workflows in the cloud, as the cloud environment enables scientific applications to utilize elastic computing resources on demand. However, despite being a key to efficiently managing application execution in the cloud, traditional workflow scheduling algorithms face significant challenges in the cloud environment. The gradient-based optimizer (GBO) is a newly proposed evolutionary algorithm with a search engine based on the Newton’s method. It employs a set of vectors to search in the solution space. This study designs a gradient-based scheduler by using GBO for workflow scheduling to minimize the usage costs of workflows under given deadline constraints. Extensive experiments are conducted on well-known scientific workflows of different sizes and types using WorkflowSim. The experimental results show that the proposed scheduling algorithm outperforms five other state-of-the-art algorithms in terms of both the constraint satisfiability and cost optimization, thereby verifying its advantages in addressing workflow scheduling problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
14.30%
发文量
89
期刊介绍: JACIII focuses on advanced computational intelligence and intelligent informatics. The topics include, but are not limited to; Fuzzy logic, Fuzzy control, Neural Networks, GA and Evolutionary Computation, Hybrid Systems, Adaptation and Learning Systems, Distributed Intelligent Systems, Network systems, Multi-media, Human interface, Biologically inspired evolutionary systems, Artificial life, Chaos, Complex systems, Fractals, Robotics, Medical applications, Pattern recognition, Virtual reality, Wavelet analysis, Scientific applications, Industrial applications, and Artistic applications.
期刊最新文献
The Impact of Individual Heterogeneity on Household Asset Choice: An Empirical Study Based on China Family Panel Studies Private Placement, Investor Sentiment, and Stock Price Anomaly Does Increasing Public Service Expenditure Slow the Long-Term Economic Growth Rate?—Evidence from China Prediction and Characteristic Analysis of Enterprise Digital Transformation Integrating XGBoost and SHAP Industrial Chain Map and Linkage Network Characteristics of Digital Economy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1