大规模互连网络中的间接自适应路由

Nan Jiang, John Kim, W. Dally
{"title":"大规模互连网络中的间接自适应路由","authors":"Nan Jiang, John Kim, W. Dally","doi":"10.1145/1555754.1555783","DOIUrl":null,"url":null,"abstract":"Recently proposed high-radix interconnection networks [10] require global adaptive routing to achieve optimum performance. Existing direct adaptive routing methods are slow to sense congestion remote from the source router and hence misroute many packets before such congestion is detected. This paper introduces indirect global adaptive routing (IAR) in which the adaptive routing decision uses information that is not directly available at the source router. We describe four IAR routing methods: credit round trip (CRT) [10], progressive adaptive routing (PAR), piggyback routing (PB), and reservation routing (RES). We evaluate each of these methods on the dragonfly topology under both steady-state and transient loads. Our results show that PB, PAR, and CRT all achieve good performance. PB provides the best absolute performance, with 2-7% lower latency on steady-state uniform random traffic at 70% load, while PAR provides the fastest response on transient loads. We also evaluate the implementation costs of the indirect adaptive routing methods and show that PB has the lowest implementation cost requiring <1% increase in the total storage of a typical high-radix router.","PeriodicalId":91388,"journal":{"name":"Proceedings. International Symposium on Computer Architecture","volume":"71 1","pages":"220-231"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"119","resultStr":"{\"title\":\"Indirect adaptive routing on large scale interconnection networks\",\"authors\":\"Nan Jiang, John Kim, W. Dally\",\"doi\":\"10.1145/1555754.1555783\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently proposed high-radix interconnection networks [10] require global adaptive routing to achieve optimum performance. Existing direct adaptive routing methods are slow to sense congestion remote from the source router and hence misroute many packets before such congestion is detected. This paper introduces indirect global adaptive routing (IAR) in which the adaptive routing decision uses information that is not directly available at the source router. We describe four IAR routing methods: credit round trip (CRT) [10], progressive adaptive routing (PAR), piggyback routing (PB), and reservation routing (RES). We evaluate each of these methods on the dragonfly topology under both steady-state and transient loads. Our results show that PB, PAR, and CRT all achieve good performance. PB provides the best absolute performance, with 2-7% lower latency on steady-state uniform random traffic at 70% load, while PAR provides the fastest response on transient loads. We also evaluate the implementation costs of the indirect adaptive routing methods and show that PB has the lowest implementation cost requiring <1% increase in the total storage of a typical high-radix router.\",\"PeriodicalId\":91388,\"journal\":{\"name\":\"Proceedings. International Symposium on Computer Architecture\",\"volume\":\"71 1\",\"pages\":\"220-231\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"119\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. International Symposium on Computer Architecture\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1555754.1555783\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. International Symposium on Computer Architecture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1555754.1555783","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 119

摘要

最近提出的高基数互连网络[10]需要全局自适应路由来实现最佳性能。现有的直接自适应路由方法在距离源路由器较远的地方感知拥塞的速度较慢,因此在检测到拥塞之前会错误地路由许多数据包。本文介绍了间接全局自适应路由(IAR),其中自适应路由决策使用源路由器上不能直接获得的信息。我们描述了四种IAR路由方法:信用往返(CRT)[10]、渐进式自适应路由(PAR)、背带路由(PB)和预订路由(RES)。我们在蜻蜓拓扑上评估了这些方法在稳态和瞬态载荷下的性能。我们的研究结果表明,PB、PAR和CRT都取得了良好的性能。PB提供了最好的绝对性能,在70%负载下的稳态均匀随机流量上延迟降低了2-7%,而PAR在瞬态负载上提供了最快的响应。我们还评估了间接自适应路由方法的实现成本,并表明在典型的高基数路由器中,PB具有最低的实现成本,所需的总存储增加<1%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Indirect adaptive routing on large scale interconnection networks
Recently proposed high-radix interconnection networks [10] require global adaptive routing to achieve optimum performance. Existing direct adaptive routing methods are slow to sense congestion remote from the source router and hence misroute many packets before such congestion is detected. This paper introduces indirect global adaptive routing (IAR) in which the adaptive routing decision uses information that is not directly available at the source router. We describe four IAR routing methods: credit round trip (CRT) [10], progressive adaptive routing (PAR), piggyback routing (PB), and reservation routing (RES). We evaluate each of these methods on the dragonfly topology under both steady-state and transient loads. Our results show that PB, PAR, and CRT all achieve good performance. PB provides the best absolute performance, with 2-7% lower latency on steady-state uniform random traffic at 70% load, while PAR provides the fastest response on transient loads. We also evaluate the implementation costs of the indirect adaptive routing methods and show that PB has the lowest implementation cost requiring <1% increase in the total storage of a typical high-radix router.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ISCA '22: The 49th Annual International Symposium on Computer Architecture, New York, New York, USA, June 18 - 22, 2022 Special-purpose and future architectures Computer memory systems Basics of the central processing unit FRONT MATTER
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1