Sevda Özge Bursa, Özlem Durmaz İncel, Gülfem Işıklar Alptekin
{"title":"使用TensorFlow Lite构建轻量级深度学习模型,用于移动设备上的人类活动识别","authors":"Sevda Özge Bursa, Özlem Durmaz İncel, Gülfem Işıklar Alptekin","doi":"10.1007/s12243-023-00962-x","DOIUrl":null,"url":null,"abstract":"<div><p>Human activity recognition (HAR) is a research domain that enables continuous monitoring of human behaviors for various purposes, from assisted living to surveillance in smart home environments. These applications generally work with a rich collection of sensor data generated using smartphones and other low-power wearable devices. The amount of collected data can quickly become immense, necessitating time and resource-consuming computations. Deep learning (DL) has recently become a promising trend in HAR. However, it is challenging to train and run DL algorithms on mobile devices due to their limited battery power, memory, and computation units. In this paper, we evaluate and compare the performance of four different deep architectures trained on three datasets from the HAR literature (WISDM, MobiAct, OpenHAR). We use the TensorFlow Lite platform with quantization techniques to convert the models into lighter versions for deployment on mobile devices. We compare the performance of the original models in terms of accuracy, size, and resource usage with their optimized versions. The experiments reveal that the model size and resource consumption can significantly be reduced when optimized with TensorFlow Lite without sacrificing the accuracy of the models.</p></div>","PeriodicalId":50761,"journal":{"name":"Annals of Telecommunications","volume":"78 11-12","pages":"687 - 702"},"PeriodicalIF":1.8000,"publicationDate":"2023-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Building Lightweight Deep learning Models with TensorFlow Lite for Human Activity Recognition on Mobile Devices\",\"authors\":\"Sevda Özge Bursa, Özlem Durmaz İncel, Gülfem Işıklar Alptekin\",\"doi\":\"10.1007/s12243-023-00962-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Human activity recognition (HAR) is a research domain that enables continuous monitoring of human behaviors for various purposes, from assisted living to surveillance in smart home environments. These applications generally work with a rich collection of sensor data generated using smartphones and other low-power wearable devices. The amount of collected data can quickly become immense, necessitating time and resource-consuming computations. Deep learning (DL) has recently become a promising trend in HAR. However, it is challenging to train and run DL algorithms on mobile devices due to their limited battery power, memory, and computation units. In this paper, we evaluate and compare the performance of four different deep architectures trained on three datasets from the HAR literature (WISDM, MobiAct, OpenHAR). We use the TensorFlow Lite platform with quantization techniques to convert the models into lighter versions for deployment on mobile devices. We compare the performance of the original models in terms of accuracy, size, and resource usage with their optimized versions. The experiments reveal that the model size and resource consumption can significantly be reduced when optimized with TensorFlow Lite without sacrificing the accuracy of the models.</p></div>\",\"PeriodicalId\":50761,\"journal\":{\"name\":\"Annals of Telecommunications\",\"volume\":\"78 11-12\",\"pages\":\"687 - 702\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Telecommunications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12243-023-00962-x\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Telecommunications","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s12243-023-00962-x","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
Building Lightweight Deep learning Models with TensorFlow Lite for Human Activity Recognition on Mobile Devices
Human activity recognition (HAR) is a research domain that enables continuous monitoring of human behaviors for various purposes, from assisted living to surveillance in smart home environments. These applications generally work with a rich collection of sensor data generated using smartphones and other low-power wearable devices. The amount of collected data can quickly become immense, necessitating time and resource-consuming computations. Deep learning (DL) has recently become a promising trend in HAR. However, it is challenging to train and run DL algorithms on mobile devices due to their limited battery power, memory, and computation units. In this paper, we evaluate and compare the performance of four different deep architectures trained on three datasets from the HAR literature (WISDM, MobiAct, OpenHAR). We use the TensorFlow Lite platform with quantization techniques to convert the models into lighter versions for deployment on mobile devices. We compare the performance of the original models in terms of accuracy, size, and resource usage with their optimized versions. The experiments reveal that the model size and resource consumption can significantly be reduced when optimized with TensorFlow Lite without sacrificing the accuracy of the models.
期刊介绍:
Annals of Telecommunications is an international journal publishing original peer-reviewed papers in the field of telecommunications. It covers all the essential branches of modern telecommunications, ranging from digital communications to communication networks and the internet, to software, protocols and services, uses and economics. This large spectrum of topics accounts for the rapid convergence through telecommunications of the underlying technologies in computers, communications, content management towards the emergence of the information and knowledge society. As a consequence, the Journal provides a medium for exchanging research results and technological achievements accomplished by the European and international scientific community from academia and industry.