使用移动应用程序和机器学习跟踪个人健康状况

Giannis Botilias, Lamprini Pappa, P. Karvelis, C. Stylios
{"title":"使用移动应用程序和机器学习跟踪个人健康状况","authors":"Giannis Botilias, Lamprini Pappa, P. Karvelis, C. Stylios","doi":"10.1109/SEEDA-CECNSM57760.2022.9932927","DOIUrl":null,"url":null,"abstract":"The widespread availability of smartphones and their high processing power have made them powerful mobile tools able to host and run various apps. In addition, wearable devices with low cost and accurate sensors gathering various physiological data and information are now available. Meanwhile, automated activity recognition is a rapidly evolving research area directly related to the mobile Health (mHealth) field. Rapid advancements in the Human Activity Recognition (HAR) field are mainly based on combining smartphones and wearable devices to succeed in advancing health tracking. This paper presents a mobile app designed and developed for monitoring changes in variables related to the physiological health status of an individual when he is moving around. The app tracks the physiological status of a human along with machine learning algorithms able to recognize and identify human activity and produce automatic alerts warning of dangerous health situations.","PeriodicalId":68279,"journal":{"name":"计算机工程与设计","volume":"1936 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Tracking individuals’ health using mobile applications and Machine Learning\",\"authors\":\"Giannis Botilias, Lamprini Pappa, P. Karvelis, C. Stylios\",\"doi\":\"10.1109/SEEDA-CECNSM57760.2022.9932927\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The widespread availability of smartphones and their high processing power have made them powerful mobile tools able to host and run various apps. In addition, wearable devices with low cost and accurate sensors gathering various physiological data and information are now available. Meanwhile, automated activity recognition is a rapidly evolving research area directly related to the mobile Health (mHealth) field. Rapid advancements in the Human Activity Recognition (HAR) field are mainly based on combining smartphones and wearable devices to succeed in advancing health tracking. This paper presents a mobile app designed and developed for monitoring changes in variables related to the physiological health status of an individual when he is moving around. The app tracks the physiological status of a human along with machine learning algorithms able to recognize and identify human activity and produce automatic alerts warning of dangerous health situations.\",\"PeriodicalId\":68279,\"journal\":{\"name\":\"计算机工程与设计\",\"volume\":\"1936 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"计算机工程与设计\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.1109/SEEDA-CECNSM57760.2022.9932927\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"计算机工程与设计","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.1109/SEEDA-CECNSM57760.2022.9932927","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

智能手机的广泛使用及其强大的处理能力使其成为强大的移动工具,能够托管和运行各种应用程序。此外,低成本和精确的传感器收集各种生理数据和信息的可穿戴设备现在已经可用。同时,自动活动识别是与移动健康(mHealth)领域直接相关的一个快速发展的研究领域。人体活动识别(HAR)领域的快速发展主要是基于智能手机和可穿戴设备的结合,以成功推进健康跟踪。本文介绍了一个移动应用程序的设计和开发,用于监测与个人的生理健康状态有关的变量的变化,当他四处走动。该应用程序跟踪人类的生理状态,以及能够识别和识别人类活动的机器学习算法,并对危险的健康状况发出自动警报。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Tracking individuals’ health using mobile applications and Machine Learning
The widespread availability of smartphones and their high processing power have made them powerful mobile tools able to host and run various apps. In addition, wearable devices with low cost and accurate sensors gathering various physiological data and information are now available. Meanwhile, automated activity recognition is a rapidly evolving research area directly related to the mobile Health (mHealth) field. Rapid advancements in the Human Activity Recognition (HAR) field are mainly based on combining smartphones and wearable devices to succeed in advancing health tracking. This paper presents a mobile app designed and developed for monitoring changes in variables related to the physiological health status of an individual when he is moving around. The app tracks the physiological status of a human along with machine learning algorithms able to recognize and identify human activity and produce automatic alerts warning of dangerous health situations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
20353
期刊介绍: Computer Engineering and Design is supervised by China Aerospace Science and Industry Corporation and sponsored by the 706th Institute of the Second Academy of China Aerospace Science and Industry Corporation. It was founded in 1980. The purpose of the journal is to disseminate new technologies and promote academic exchanges. Since its inception, it has adhered to the principle of combining depth and breadth, theory and application, and focused on reporting cutting-edge and hot computer technologies. The journal accepts academic papers with innovative and independent academic insights, including papers on fund projects, award-winning research papers, outstanding papers at academic conferences, doctoral and master's theses, etc.
期刊最新文献
Open weather data evaluation for crop irrigation prediction mechanisms in the AUGEIAS project A bi-directional shortest path calculation speed up technique for RDBMS Scavenging PyPi for VLSI Packages Environmental Awareness in Preschool Education via Educational Robotics and STEAM Education A TinyML-based Alcohol Impairment Detection System For Vehicle Accident Prevention
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1