{"title":"英国空气污染对石灰石降解影响的研究","authors":"A.H. Webb, R.J. Bawden, A.K. Busby, J.N. Hopkins","doi":"10.1016/0957-1272(92)90020-S","DOIUrl":null,"url":null,"abstract":"<div><p>The CEGB and the Cathedrals Advisory Commission for England formed a Joint Working Party in 1985 to promote a research programme aimed at improving the understanding of the relationships between stone decay, atmospheric pollution and other factors. The programme has included exposure of limestone samples at York Minster and eight other sites in England and Scotland selected to give a mix of urban, marine and rural locations. All of the sites have comprehensive air pollution and meteorological monitoring and measurement of rainfall chemistry. At two sites samples have been fumigated with controlled levels of sulphur dioxide.</p><p>Over all sites, there was a significant trend to increased weight loss with increase in average sulphur dioxide concentration, but a negative trend with total nitrogen oxides and with nitrogen dioxide. For sample exposures longer than 200 days, the sulphur dioxide dependence at the inland Liphook fumigation site was about half that found near the coast at Littlehampton. There was no significant trend to increase weight loss with total rainfall amount for the complete data set, but the analysis was dominated by the very wet Scottish site, which experienced the lowest average concentrations of air pollutants.</p><p>A theoretical model for the chemical dissolution of rainwashed limestone has been derived from consideration of the ion and mass balances between the incident rain water and run-off water. The model has been fitted to the measured loss rates from the stonework field trials. With the exception of the very wet Scottish site, the difference between the stone loss rate, calculated from the model, and the mean measured loss rate for any particular exposure was generally smaller than the variation between the triplicate samples. Variation in the dry deposition velocity between sites and exposure periods does not appear to have been a very significant factor, and no residual effect due to the concentrations of nitrogen oxides was found. The natural solubility of limestone in water was the dominant term in describing the stone loss, and neutralization of the rainfall acidity the least significant. The volume of the intercepted rainfall and the variation in the pH of the run-off water with rainfall intensity have been identified as the two most significant terms which require more precise quantification. The data from the inland fumigation site used in the model predict a stone loss due to sulphur dioxide in the air of less than 1 μm yr<sup>−1</sup> surface recession per ppb SO<sub>2</sub>.</p></div>","PeriodicalId":100140,"journal":{"name":"Atmospheric Environment. Part B. Urban Atmosphere","volume":"26 2","pages":"Pages 165-181"},"PeriodicalIF":0.0000,"publicationDate":"1992-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0957-1272(92)90020-S","citationCount":"61","resultStr":"{\"title\":\"Studies on the effects of air pollution on limestone degradation in Great Britain\",\"authors\":\"A.H. Webb, R.J. Bawden, A.K. Busby, J.N. Hopkins\",\"doi\":\"10.1016/0957-1272(92)90020-S\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The CEGB and the Cathedrals Advisory Commission for England formed a Joint Working Party in 1985 to promote a research programme aimed at improving the understanding of the relationships between stone decay, atmospheric pollution and other factors. The programme has included exposure of limestone samples at York Minster and eight other sites in England and Scotland selected to give a mix of urban, marine and rural locations. All of the sites have comprehensive air pollution and meteorological monitoring and measurement of rainfall chemistry. At two sites samples have been fumigated with controlled levels of sulphur dioxide.</p><p>Over all sites, there was a significant trend to increased weight loss with increase in average sulphur dioxide concentration, but a negative trend with total nitrogen oxides and with nitrogen dioxide. For sample exposures longer than 200 days, the sulphur dioxide dependence at the inland Liphook fumigation site was about half that found near the coast at Littlehampton. There was no significant trend to increase weight loss with total rainfall amount for the complete data set, but the analysis was dominated by the very wet Scottish site, which experienced the lowest average concentrations of air pollutants.</p><p>A theoretical model for the chemical dissolution of rainwashed limestone has been derived from consideration of the ion and mass balances between the incident rain water and run-off water. The model has been fitted to the measured loss rates from the stonework field trials. With the exception of the very wet Scottish site, the difference between the stone loss rate, calculated from the model, and the mean measured loss rate for any particular exposure was generally smaller than the variation between the triplicate samples. Variation in the dry deposition velocity between sites and exposure periods does not appear to have been a very significant factor, and no residual effect due to the concentrations of nitrogen oxides was found. The natural solubility of limestone in water was the dominant term in describing the stone loss, and neutralization of the rainfall acidity the least significant. The volume of the intercepted rainfall and the variation in the pH of the run-off water with rainfall intensity have been identified as the two most significant terms which require more precise quantification. The data from the inland fumigation site used in the model predict a stone loss due to sulphur dioxide in the air of less than 1 μm yr<sup>−1</sup> surface recession per ppb SO<sub>2</sub>.</p></div>\",\"PeriodicalId\":100140,\"journal\":{\"name\":\"Atmospheric Environment. Part B. Urban Atmosphere\",\"volume\":\"26 2\",\"pages\":\"Pages 165-181\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/0957-1272(92)90020-S\",\"citationCount\":\"61\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atmospheric Environment. Part B. Urban Atmosphere\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/095712729290020S\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Environment. Part B. Urban Atmosphere","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/095712729290020S","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Studies on the effects of air pollution on limestone degradation in Great Britain
The CEGB and the Cathedrals Advisory Commission for England formed a Joint Working Party in 1985 to promote a research programme aimed at improving the understanding of the relationships between stone decay, atmospheric pollution and other factors. The programme has included exposure of limestone samples at York Minster and eight other sites in England and Scotland selected to give a mix of urban, marine and rural locations. All of the sites have comprehensive air pollution and meteorological monitoring and measurement of rainfall chemistry. At two sites samples have been fumigated with controlled levels of sulphur dioxide.
Over all sites, there was a significant trend to increased weight loss with increase in average sulphur dioxide concentration, but a negative trend with total nitrogen oxides and with nitrogen dioxide. For sample exposures longer than 200 days, the sulphur dioxide dependence at the inland Liphook fumigation site was about half that found near the coast at Littlehampton. There was no significant trend to increase weight loss with total rainfall amount for the complete data set, but the analysis was dominated by the very wet Scottish site, which experienced the lowest average concentrations of air pollutants.
A theoretical model for the chemical dissolution of rainwashed limestone has been derived from consideration of the ion and mass balances between the incident rain water and run-off water. The model has been fitted to the measured loss rates from the stonework field trials. With the exception of the very wet Scottish site, the difference between the stone loss rate, calculated from the model, and the mean measured loss rate for any particular exposure was generally smaller than the variation between the triplicate samples. Variation in the dry deposition velocity between sites and exposure periods does not appear to have been a very significant factor, and no residual effect due to the concentrations of nitrogen oxides was found. The natural solubility of limestone in water was the dominant term in describing the stone loss, and neutralization of the rainfall acidity the least significant. The volume of the intercepted rainfall and the variation in the pH of the run-off water with rainfall intensity have been identified as the two most significant terms which require more precise quantification. The data from the inland fumigation site used in the model predict a stone loss due to sulphur dioxide in the air of less than 1 μm yr−1 surface recession per ppb SO2.