Robert P Goldman, Robert Moseley, Nicholas Roehner, Breschine Cummins, Justin D Vrana, Katie J Clowers, Daniel Bryce, Jacob Beal, Matthew DeHaven, Joshua Nowak, Trissha Higa, Vanessa Biggers, Peter Lee, Jeremy P Hunt, Lorraine Mosqueda, Steven B Haase, Mark Weston, George Zheng, Anastasia Deckard, Shweta Gopaulakrishnan, Joseph F Stubbs, Niall I Gaffney, Matthew W Vaughn, Narendra Maheshri, Ekaterina Mikhalev, Bryan Bartley, Richard Markeloff, Tom Mitchell, Tramy Nguyen, Daniel Sumorok, Nicholas Walczak, Chris Myers, Zach Zundel, Benjamin Hatch, James Scholz, John Colonna-Romano
{"title":"基于酵母的逻辑电路设计评估的高自动化、高通量复制。","authors":"Robert P Goldman, Robert Moseley, Nicholas Roehner, Breschine Cummins, Justin D Vrana, Katie J Clowers, Daniel Bryce, Jacob Beal, Matthew DeHaven, Joshua Nowak, Trissha Higa, Vanessa Biggers, Peter Lee, Jeremy P Hunt, Lorraine Mosqueda, Steven B Haase, Mark Weston, George Zheng, Anastasia Deckard, Shweta Gopaulakrishnan, Joseph F Stubbs, Niall I Gaffney, Matthew W Vaughn, Narendra Maheshri, Ekaterina Mikhalev, Bryan Bartley, Richard Markeloff, Tom Mitchell, Tramy Nguyen, Daniel Sumorok, Nicholas Walczak, Chris Myers, Zach Zundel, Benjamin Hatch, James Scholz, John Colonna-Romano","doi":"10.1093/synbio/ysac018","DOIUrl":null,"url":null,"abstract":"<p><p>We describe an experimental campaign that replicated the performance assessment of logic gates engineered into cells of <i>Saccharomyces cerevisiae</i> by Gander <i>et al.</i> Our experimental campaign used a novel high-throughput experimentation framework developed under Defense Advanced Research Projects Agency's Synergistic Discovery and Design program: a remote robotic lab at Strateos executed a parameterized experimental protocol. Using this protocol and robotic execution, we generated two orders of magnitude more flow cytometry data than the original experiments. We discuss our results, which largely, but not completely, agree with the original report and make some remarks about lessons learned. <b>Graphical Abstract</b>.</p>","PeriodicalId":48745,"journal":{"name":"Environmental Archaeology","volume":"19 1","pages":"ysac018"},"PeriodicalIF":1.2000,"publicationDate":"2022-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9583850/pdf/","citationCount":"0","resultStr":"{\"title\":\"Highly-automated, high-throughput replication of yeast-based logic circuit design assessments.\",\"authors\":\"Robert P Goldman, Robert Moseley, Nicholas Roehner, Breschine Cummins, Justin D Vrana, Katie J Clowers, Daniel Bryce, Jacob Beal, Matthew DeHaven, Joshua Nowak, Trissha Higa, Vanessa Biggers, Peter Lee, Jeremy P Hunt, Lorraine Mosqueda, Steven B Haase, Mark Weston, George Zheng, Anastasia Deckard, Shweta Gopaulakrishnan, Joseph F Stubbs, Niall I Gaffney, Matthew W Vaughn, Narendra Maheshri, Ekaterina Mikhalev, Bryan Bartley, Richard Markeloff, Tom Mitchell, Tramy Nguyen, Daniel Sumorok, Nicholas Walczak, Chris Myers, Zach Zundel, Benjamin Hatch, James Scholz, John Colonna-Romano\",\"doi\":\"10.1093/synbio/ysac018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We describe an experimental campaign that replicated the performance assessment of logic gates engineered into cells of <i>Saccharomyces cerevisiae</i> by Gander <i>et al.</i> Our experimental campaign used a novel high-throughput experimentation framework developed under Defense Advanced Research Projects Agency's Synergistic Discovery and Design program: a remote robotic lab at Strateos executed a parameterized experimental protocol. Using this protocol and robotic execution, we generated two orders of magnitude more flow cytometry data than the original experiments. We discuss our results, which largely, but not completely, agree with the original report and make some remarks about lessons learned. <b>Graphical Abstract</b>.</p>\",\"PeriodicalId\":48745,\"journal\":{\"name\":\"Environmental Archaeology\",\"volume\":\"19 1\",\"pages\":\"ysac018\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9583850/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Archaeology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/synbio/ysac018\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"0\",\"JCRName\":\"ARCHAEOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Archaeology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/synbio/ysac018","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/1 0:00:00","PubModel":"eCollection","JCR":"0","JCRName":"ARCHAEOLOGY","Score":null,"Total":0}
Highly-automated, high-throughput replication of yeast-based logic circuit design assessments.
We describe an experimental campaign that replicated the performance assessment of logic gates engineered into cells of Saccharomyces cerevisiae by Gander et al. Our experimental campaign used a novel high-throughput experimentation framework developed under Defense Advanced Research Projects Agency's Synergistic Discovery and Design program: a remote robotic lab at Strateos executed a parameterized experimental protocol. Using this protocol and robotic execution, we generated two orders of magnitude more flow cytometry data than the original experiments. We discuss our results, which largely, but not completely, agree with the original report and make some remarks about lessons learned. Graphical Abstract.
期刊介绍:
Environmental Archaeology: The Journal of Human Palaeoecology aims to publish contributions on all aspects of environmental archaeology, from methodology to synthesis and theory.
Environmental Archaeology is an international peer-reviewed periodical which welcomes contributions that consider the interaction between humans and their environment in the archaeological and historical past. This broad scope embraces papers covering a range of environmental specialisms within archaeology, such as archaeobotany, archaeozoology (both vertebrate and invertebrate), palynology, geoarchaeology, biological anthropology, as well as more synthetic and theoretical approaches to the past human environment. Assemblage and site reports are not encouraged unless these can demonstrate significant new insights in environmental archaeology. Contributions may take the form of substantial research papers or shorter reports and may include, for instance, new techniques, philosophical discussions, current controversies and suggestions for new research. The journal also provides its readership with critical appraisal of recent academic scholarship through its regular books review section.