{"title":"电网供电通信网络的关键位置","authors":"H. Saito","doi":"10.1587/transcom.2022ebp3022","DOIUrl":null,"url":null,"abstract":"SUMMARY When a disaster hits a network, network service disruptions can occur even if the network facilities have survived and battery and power generators are provided. This is because in the event of a disaster, the power supply will not be restarted within the lifetime of the battery or oil transportation will not be restarted before running out of oil and power will be running out. Therefore, taking a power grid into account is important. This paper proposes a polynomial-time algorithm to identify the critical location C ∗ D of a communications network N c when a disaster hits. Electrical power grid N p supplies power to the nodes of N c , and a link in N c is disconnected when a node or a link in N c or N p fails. Here, the disaster area is modeled as co-centric disks and the failure probability is higher in the inner disk than the outer one. The location of the center of the disaster with the greatest expected number of disconnected links in N c is taken as the critical location C ∗ D . key words: disaster, critical location, network failure, cascading failure, power grid","PeriodicalId":48825,"journal":{"name":"IEICE Transactions on Communications","volume":"104 1","pages":"166-173"},"PeriodicalIF":0.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Critical Location of Communications Network with Power Grid Power Supply\",\"authors\":\"H. Saito\",\"doi\":\"10.1587/transcom.2022ebp3022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SUMMARY When a disaster hits a network, network service disruptions can occur even if the network facilities have survived and battery and power generators are provided. This is because in the event of a disaster, the power supply will not be restarted within the lifetime of the battery or oil transportation will not be restarted before running out of oil and power will be running out. Therefore, taking a power grid into account is important. This paper proposes a polynomial-time algorithm to identify the critical location C ∗ D of a communications network N c when a disaster hits. Electrical power grid N p supplies power to the nodes of N c , and a link in N c is disconnected when a node or a link in N c or N p fails. Here, the disaster area is modeled as co-centric disks and the failure probability is higher in the inner disk than the outer one. The location of the center of the disaster with the greatest expected number of disconnected links in N c is taken as the critical location C ∗ D . key words: disaster, critical location, network failure, cascading failure, power grid\",\"PeriodicalId\":48825,\"journal\":{\"name\":\"IEICE Transactions on Communications\",\"volume\":\"104 1\",\"pages\":\"166-173\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEICE Transactions on Communications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1587/transcom.2022ebp3022\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEICE Transactions on Communications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1587/transcom.2022ebp3022","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Critical Location of Communications Network with Power Grid Power Supply
SUMMARY When a disaster hits a network, network service disruptions can occur even if the network facilities have survived and battery and power generators are provided. This is because in the event of a disaster, the power supply will not be restarted within the lifetime of the battery or oil transportation will not be restarted before running out of oil and power will be running out. Therefore, taking a power grid into account is important. This paper proposes a polynomial-time algorithm to identify the critical location C ∗ D of a communications network N c when a disaster hits. Electrical power grid N p supplies power to the nodes of N c , and a link in N c is disconnected when a node or a link in N c or N p fails. Here, the disaster area is modeled as co-centric disks and the failure probability is higher in the inner disk than the outer one. The location of the center of the disaster with the greatest expected number of disconnected links in N c is taken as the critical location C ∗ D . key words: disaster, critical location, network failure, cascading failure, power grid
期刊介绍:
The IEICE Transactions on Communications is an all-electronic journal published occasionally by the Institute of Electronics, Information and Communication Engineers (IEICE) and edited by the Communications Society in IEICE. The IEICE Transactions on Communications publishes original, peer-reviewed papers that embrace the entire field of communications, including:
- Fundamental Theories for Communications
- Energy in Electronics Communications
- Transmission Systems and Transmission Equipment for Communications
- Optical Fiber for Communications
- Fiber-Optic Transmission for Communications
- Network System
- Network
- Internet
- Network Management/Operation
- Antennas and Propagation
- Electromagnetic Compatibility (EMC)
- Wireless Communication Technologies
- Terrestrial Wireless Communication/Broadcasting Technologies
- Satellite Communications
- Sensing
- Navigation, Guidance and Control Systems
- Space Utilization Systems for Communications
- Multimedia Systems for Communication