Giovanni Cardillo, P. Giordani, Susanna Levantesi, A. Nigri, A. Spelta
{"title":"使用四向CANDECOMP/PARAFAC分解进行死亡率预测","authors":"Giovanni Cardillo, P. Giordani, Susanna Levantesi, A. Nigri, A. Spelta","doi":"10.1080/03461238.2023.2175326","DOIUrl":null,"url":null,"abstract":"To design appropriate pension or insurance plans it is crucial to understand mortality heterogeneity across demographic features, such as age, gender, and country. To this aim, we propose a coherent mortality forecasting methodology, which leverages the four-way CANDECOMP/PARAFAC and Vector-Error Correction models. We examine how age groups, years, countries, and gender impact target variables, namely log-centered mortality rates and compositional transformation of mortality data using the Human Mortality Database. The CANDECOMP/PARAFAC model synthesizes the behavior of the target variables through a few latent components and highlights the evolution of the temporal patterns. These patterns are employed to forecast future trajectories of mortality with Vector-Error Correction models, which account for the non-stationarity of the series. We carry out Monte Carlo simulations to obtain the distributions of the time component over the forecasted period 2001–2015, and we evaluate the goodness of the prediction by computing the Root Mean Square Error and the Mean Absolute Error. Our analysis underlines that understanding mortality dynamics in a high-dimensional framework is crucial for demographic assessments and could help design appropriate pension plans that mitigate the burden of increased longevity. The paper provides two steps further on methodological developments in the field of mortality analysis and forecasting in a high-dimensional space by (i) offering a comprehensive picture of mortality data through the four-way decomposition and (ii) designing appropriate forecasting of mortality data which relies on the projection of the temporal component through Vector-Error Correction models.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Mortality forecasting using the four-way CANDECOMP/PARAFAC decomposition\",\"authors\":\"Giovanni Cardillo, P. Giordani, Susanna Levantesi, A. Nigri, A. Spelta\",\"doi\":\"10.1080/03461238.2023.2175326\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To design appropriate pension or insurance plans it is crucial to understand mortality heterogeneity across demographic features, such as age, gender, and country. To this aim, we propose a coherent mortality forecasting methodology, which leverages the four-way CANDECOMP/PARAFAC and Vector-Error Correction models. We examine how age groups, years, countries, and gender impact target variables, namely log-centered mortality rates and compositional transformation of mortality data using the Human Mortality Database. The CANDECOMP/PARAFAC model synthesizes the behavior of the target variables through a few latent components and highlights the evolution of the temporal patterns. These patterns are employed to forecast future trajectories of mortality with Vector-Error Correction models, which account for the non-stationarity of the series. We carry out Monte Carlo simulations to obtain the distributions of the time component over the forecasted period 2001–2015, and we evaluate the goodness of the prediction by computing the Root Mean Square Error and the Mean Absolute Error. Our analysis underlines that understanding mortality dynamics in a high-dimensional framework is crucial for demographic assessments and could help design appropriate pension plans that mitigate the burden of increased longevity. The paper provides two steps further on methodological developments in the field of mortality analysis and forecasting in a high-dimensional space by (i) offering a comprehensive picture of mortality data through the four-way decomposition and (ii) designing appropriate forecasting of mortality data which relies on the projection of the temporal component through Vector-Error Correction models.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1080/03461238.2023.2175326\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1080/03461238.2023.2175326","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Mortality forecasting using the four-way CANDECOMP/PARAFAC decomposition
To design appropriate pension or insurance plans it is crucial to understand mortality heterogeneity across demographic features, such as age, gender, and country. To this aim, we propose a coherent mortality forecasting methodology, which leverages the four-way CANDECOMP/PARAFAC and Vector-Error Correction models. We examine how age groups, years, countries, and gender impact target variables, namely log-centered mortality rates and compositional transformation of mortality data using the Human Mortality Database. The CANDECOMP/PARAFAC model synthesizes the behavior of the target variables through a few latent components and highlights the evolution of the temporal patterns. These patterns are employed to forecast future trajectories of mortality with Vector-Error Correction models, which account for the non-stationarity of the series. We carry out Monte Carlo simulations to obtain the distributions of the time component over the forecasted period 2001–2015, and we evaluate the goodness of the prediction by computing the Root Mean Square Error and the Mean Absolute Error. Our analysis underlines that understanding mortality dynamics in a high-dimensional framework is crucial for demographic assessments and could help design appropriate pension plans that mitigate the burden of increased longevity. The paper provides two steps further on methodological developments in the field of mortality analysis and forecasting in a high-dimensional space by (i) offering a comprehensive picture of mortality data through the four-way decomposition and (ii) designing appropriate forecasting of mortality data which relies on the projection of the temporal component through Vector-Error Correction models.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.