基于生成对抗训练的cbldnn独立说话人语音分离

Chenxing Li, Lei Zhu, Shuang Xu, Peng Gao, Bo Xu
{"title":"基于生成对抗训练的cbldnn独立说话人语音分离","authors":"Chenxing Li, Lei Zhu, Shuang Xu, Peng Gao, Bo Xu","doi":"10.1109/ICASSP.2018.8462505","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a speaker-independent multi-speaker monaural speech separation system (CBLDNN-GAT) based on convolutional, bidirectional long short-term memory, deep feedforward neural network (CBLDNN) with generative adversarial training (GAT). Our system aims at obtaining better speech quality instead of only minimizing a mean square error (MSE). In the initial phase, we utilize log-mel filterbank and pitch features to warm up our CBLDNN in a multi-task manner. Thus, the information that contributes to separating speech and improving speech quality is integrated into the model. We execute GAT throughout the training, which makes the separated speech indistinguishable from the real one. We evaluate CBLDNN-GAT on WSJ0-2mix dataset. The experimental results show that the proposed model achieves 11.0d-B signal-to-distortion ratio (SDR) improvement, which is the new state-of-the-art result.","PeriodicalId":6638,"journal":{"name":"2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"36 1","pages":"711-715"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":"{\"title\":\"CBLDNN-Based Speaker-Independent Speech Separation Via Generative Adversarial Training\",\"authors\":\"Chenxing Li, Lei Zhu, Shuang Xu, Peng Gao, Bo Xu\",\"doi\":\"10.1109/ICASSP.2018.8462505\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a speaker-independent multi-speaker monaural speech separation system (CBLDNN-GAT) based on convolutional, bidirectional long short-term memory, deep feedforward neural network (CBLDNN) with generative adversarial training (GAT). Our system aims at obtaining better speech quality instead of only minimizing a mean square error (MSE). In the initial phase, we utilize log-mel filterbank and pitch features to warm up our CBLDNN in a multi-task manner. Thus, the information that contributes to separating speech and improving speech quality is integrated into the model. We execute GAT throughout the training, which makes the separated speech indistinguishable from the real one. We evaluate CBLDNN-GAT on WSJ0-2mix dataset. The experimental results show that the proposed model achieves 11.0d-B signal-to-distortion ratio (SDR) improvement, which is the new state-of-the-art result.\",\"PeriodicalId\":6638,\"journal\":{\"name\":\"2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"36 1\",\"pages\":\"711-715\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"37\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2018.8462505\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2018.8462505","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 37

摘要

本文提出了一种基于卷积、双向长短期记忆、深度前馈神经网络(CBLDNN)和生成对抗训练(GAT)的独立于说话人的多说话人单耳语音分离系统(CBLDNN-GAT)。我们的系统旨在获得更好的语音质量,而不仅仅是最小化均方误差(MSE)。在初始阶段,我们利用对数滤波器组和音调特征以多任务方式预热我们的CBLDNN。因此,将有助于分离语音和提高语音质量的信息集成到模型中。我们在整个训练过程中执行GAT,使分离的语音与真实语音无法区分。我们在WSJ0-2mix数据集上对CBLDNN-GAT进行了评估。实验结果表明,该模型的信号失真比(SDR)提高了11.0d-B,是最新的研究成果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CBLDNN-Based Speaker-Independent Speech Separation Via Generative Adversarial Training
In this paper, we propose a speaker-independent multi-speaker monaural speech separation system (CBLDNN-GAT) based on convolutional, bidirectional long short-term memory, deep feedforward neural network (CBLDNN) with generative adversarial training (GAT). Our system aims at obtaining better speech quality instead of only minimizing a mean square error (MSE). In the initial phase, we utilize log-mel filterbank and pitch features to warm up our CBLDNN in a multi-task manner. Thus, the information that contributes to separating speech and improving speech quality is integrated into the model. We execute GAT throughout the training, which makes the separated speech indistinguishable from the real one. We evaluate CBLDNN-GAT on WSJ0-2mix dataset. The experimental results show that the proposed model achieves 11.0d-B signal-to-distortion ratio (SDR) improvement, which is the new state-of-the-art result.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Reduced Dimension Minimum BER PSK Precoding for Constrained Transmit Signals in Massive MIMO Low Complexity Joint RDO of Prediction Units Couples for HEVC Intra Coding Non-Native Children Speech Recognition Through Transfer Learning Synthesis of Images by Two-Stage Generative Adversarial Networks Statistical T+2d Subband Modelling for Crowd Counting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1