{"title":"Orlicz特征值的下界","authors":"A. Salort","doi":"10.3934/dcds.2021158","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>In this article we consider the following weighted nonlinear eigenvalue problem for the <inline-formula><tex-math id=\"M1\">\\begin{document}$ g- $\\end{document}</tex-math></inline-formula>Laplacian</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id=\"FE1\"> \\begin{document}$ -{\\text{ div}}\\left( g(|\\nabla u|)\\frac{\\nabla u}{|\\nabla u|}\\right) = \\lambda w(x) h(|u|)\\frac{u}{|u|} \\quad \\text{ in }\\Omega\\subset \\mathbb R^n, n\\geq 1 $\\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>with Dirichlet boundary conditions. Here <inline-formula><tex-math id=\"M2\">\\begin{document}$ w $\\end{document}</tex-math></inline-formula> is a suitable weight and <inline-formula><tex-math id=\"M3\">\\begin{document}$ g = G' $\\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id=\"M4\">\\begin{document}$ h = H' $\\end{document}</tex-math></inline-formula> are appropriated Young functions satisfying the so called <inline-formula><tex-math id=\"M5\">\\begin{document}$ \\Delta' $\\end{document}</tex-math></inline-formula> condition, which includes for instance logarithmic perturbation of powers and different power behaviors near zero and infinity. We prove several properties on its spectrum, being our main goal to obtain lower bounds of eigenvalues in terms of <inline-formula><tex-math id=\"M6\">\\begin{document}$ G $\\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=\"M7\">\\begin{document}$ H $\\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=\"M8\">\\begin{document}$ w $\\end{document}</tex-math></inline-formula> and the normalization <inline-formula><tex-math id=\"M9\">\\begin{document}$ \\mu $\\end{document}</tex-math></inline-formula> of the corresponding eigenfunctions.</p><p style='text-indent:20px;'>We introduce some new strategies to obtain results that generalize several inequalities from the literature of <inline-formula><tex-math id=\"M10\">\\begin{document}$ p- $\\end{document}</tex-math></inline-formula>Laplacian type eigenvalues.</p>","PeriodicalId":11254,"journal":{"name":"Discrete & Continuous Dynamical Systems - S","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Lower bounds for Orlicz eigenvalues\",\"authors\":\"A. Salort\",\"doi\":\"10.3934/dcds.2021158\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p style='text-indent:20px;'>In this article we consider the following weighted nonlinear eigenvalue problem for the <inline-formula><tex-math id=\\\"M1\\\">\\\\begin{document}$ g- $\\\\end{document}</tex-math></inline-formula>Laplacian</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id=\\\"FE1\\\"> \\\\begin{document}$ -{\\\\text{ div}}\\\\left( g(|\\\\nabla u|)\\\\frac{\\\\nabla u}{|\\\\nabla u|}\\\\right) = \\\\lambda w(x) h(|u|)\\\\frac{u}{|u|} \\\\quad \\\\text{ in }\\\\Omega\\\\subset \\\\mathbb R^n, n\\\\geq 1 $\\\\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>with Dirichlet boundary conditions. Here <inline-formula><tex-math id=\\\"M2\\\">\\\\begin{document}$ w $\\\\end{document}</tex-math></inline-formula> is a suitable weight and <inline-formula><tex-math id=\\\"M3\\\">\\\\begin{document}$ g = G' $\\\\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id=\\\"M4\\\">\\\\begin{document}$ h = H' $\\\\end{document}</tex-math></inline-formula> are appropriated Young functions satisfying the so called <inline-formula><tex-math id=\\\"M5\\\">\\\\begin{document}$ \\\\Delta' $\\\\end{document}</tex-math></inline-formula> condition, which includes for instance logarithmic perturbation of powers and different power behaviors near zero and infinity. We prove several properties on its spectrum, being our main goal to obtain lower bounds of eigenvalues in terms of <inline-formula><tex-math id=\\\"M6\\\">\\\\begin{document}$ G $\\\\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=\\\"M7\\\">\\\\begin{document}$ H $\\\\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=\\\"M8\\\">\\\\begin{document}$ w $\\\\end{document}</tex-math></inline-formula> and the normalization <inline-formula><tex-math id=\\\"M9\\\">\\\\begin{document}$ \\\\mu $\\\\end{document}</tex-math></inline-formula> of the corresponding eigenfunctions.</p><p style='text-indent:20px;'>We introduce some new strategies to obtain results that generalize several inequalities from the literature of <inline-formula><tex-math id=\\\"M10\\\">\\\\begin{document}$ p- $\\\\end{document}</tex-math></inline-formula>Laplacian type eigenvalues.</p>\",\"PeriodicalId\":11254,\"journal\":{\"name\":\"Discrete & Continuous Dynamical Systems - S\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete & Continuous Dynamical Systems - S\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/dcds.2021158\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete & Continuous Dynamical Systems - S","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/dcds.2021158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
摘要
In this article we consider the following weighted nonlinear eigenvalue problem for the \begin{document}$ g- $\end{document}Laplacian \begin{document}$ -{\text{ div}}\left( g(|\nabla u|)\frac{\nabla u}{|\nabla u|}\right) = \lambda w(x) h(|u|)\frac{u}{|u|} \quad \text{ in }\Omega\subset \mathbb R^n, n\geq 1 $\end{document} with Dirichlet boundary conditions. Here \begin{document}$ w $\end{document} is a suitable weight and \begin{document}$ g = G' $\end{document} and \begin{document}$ h = H' $\end{document} are appropriated Young functions satisfying the so called \begin{document}$ \Delta' $\end{document} condition, which includes for instance logarithmic perturbation of powers and different power behaviors near zero and infinity. We prove several properties on its spectrum, being our main goal to obtain lower bounds of eigenvalues in terms of \begin{document}$ G $\end{document}, \begin{document}$ H $\end{document}, \begin{document}$ w $\end{document} and the normalization \begin{document}$ \mu $\end{document} of the corresponding eigenfunctions.We introduce some new strategies to obtain results that generalize several inequalities from the literature of \begin{document}$ p- $\end{document}Laplacian type eigenvalues.
with Dirichlet boundary conditions. Here \begin{document}$ w $\end{document} is a suitable weight and \begin{document}$ g = G' $\end{document} and \begin{document}$ h = H' $\end{document} are appropriated Young functions satisfying the so called \begin{document}$ \Delta' $\end{document} condition, which includes for instance logarithmic perturbation of powers and different power behaviors near zero and infinity. We prove several properties on its spectrum, being our main goal to obtain lower bounds of eigenvalues in terms of \begin{document}$ G $\end{document}, \begin{document}$ H $\end{document}, \begin{document}$ w $\end{document} and the normalization \begin{document}$ \mu $\end{document} of the corresponding eigenfunctions.
We introduce some new strategies to obtain results that generalize several inequalities from the literature of \begin{document}$ p- $\end{document}Laplacian type eigenvalues.