{"title":"网格计算系统中具有静止和故障停止错误的两级检查点建模","authors":"Rahaf Maher Ghazal, S. Jafar, M. Alhamad","doi":"10.4018/ijghpc.2021010104","DOIUrl":null,"url":null,"abstract":"With the increase in high-performance computing platform size, it makes the system reliability more challenging, and system mean time between failures (MTBF) may be too short to supply a total fault-free run. Thereby, to achieve greater benefit from these systems, the applications must include fault tolerance mechanisms to satisfy the required reliability. This manuscript focuses on grid computing platform that exposes to two types of threats: crash and silent data corruption faults, which cause the application's failure. This manuscript also addresses the problem of modeling resource availability and aims to minimize the overhead of checkpoint/recovery-fault tolerance techniques. Modeling resources faults has commonly been addressed with exponential distribution, but that isn't fully realistic for the transient errors, which appear randomly. In the manuscript, the authors use Weibull distribution to express these random faults to create the optimal time to save checkpoints.","PeriodicalId":43565,"journal":{"name":"International Journal of Grid and High Performance Computing","volume":"67 1","pages":"65-81"},"PeriodicalIF":0.6000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling of Two-Level Checkpointing With Silent and Fail-Stop Errors in Grid Computing Systems\",\"authors\":\"Rahaf Maher Ghazal, S. Jafar, M. Alhamad\",\"doi\":\"10.4018/ijghpc.2021010104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the increase in high-performance computing platform size, it makes the system reliability more challenging, and system mean time between failures (MTBF) may be too short to supply a total fault-free run. Thereby, to achieve greater benefit from these systems, the applications must include fault tolerance mechanisms to satisfy the required reliability. This manuscript focuses on grid computing platform that exposes to two types of threats: crash and silent data corruption faults, which cause the application's failure. This manuscript also addresses the problem of modeling resource availability and aims to minimize the overhead of checkpoint/recovery-fault tolerance techniques. Modeling resources faults has commonly been addressed with exponential distribution, but that isn't fully realistic for the transient errors, which appear randomly. In the manuscript, the authors use Weibull distribution to express these random faults to create the optimal time to save checkpoints.\",\"PeriodicalId\":43565,\"journal\":{\"name\":\"International Journal of Grid and High Performance Computing\",\"volume\":\"67 1\",\"pages\":\"65-81\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Grid and High Performance Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijghpc.2021010104\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Grid and High Performance Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijghpc.2021010104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Modeling of Two-Level Checkpointing With Silent and Fail-Stop Errors in Grid Computing Systems
With the increase in high-performance computing platform size, it makes the system reliability more challenging, and system mean time between failures (MTBF) may be too short to supply a total fault-free run. Thereby, to achieve greater benefit from these systems, the applications must include fault tolerance mechanisms to satisfy the required reliability. This manuscript focuses on grid computing platform that exposes to two types of threats: crash and silent data corruption faults, which cause the application's failure. This manuscript also addresses the problem of modeling resource availability and aims to minimize the overhead of checkpoint/recovery-fault tolerance techniques. Modeling resources faults has commonly been addressed with exponential distribution, but that isn't fully realistic for the transient errors, which appear randomly. In the manuscript, the authors use Weibull distribution to express these random faults to create the optimal time to save checkpoints.