集成PV-Diesel混合动力系统提高配电系统可靠性

C. C. Myint, Ohn Zin Lin, Soe Soe Ei Aung
{"title":"集成PV-Diesel混合动力系统提高配电系统可靠性","authors":"C. C. Myint, Ohn Zin Lin, Soe Soe Ei Aung","doi":"10.12962/j25796216.v3.i2.89","DOIUrl":null,"url":null,"abstract":"In Myanmar, as the main power generation is hydro power generation. the utility cannot supply sufficient power to customers during the dry season. Besides interruptions occur frequently due to aging system and lack of prospered protection. Therefore, reliability is an urgent issue in Myanmar. As a result of unbalance between generation and load, the distribution system is getting poor voltage profile, instability and high power losses in high load condition. According to network characteristics, the failure of a component always leads to consequence interruption in a radial distribution system.  Therefore, it is a must consideration to mitigate these challenges to enhance the system reliability. There are many techniques to solve the reliability problems such as reclosers, switching devices (manual and automated switches), system reconfiguration, feeder re-conducting and integration of distributed generation (DG). In this paper, system reliability assessment is evaluated in detail with the integration of the distributed generation such as PV-Diesel Hybrid System. The location of DG is chosen according to the expected energy not supply (EENS) and the voltage drop in proposed system. Next, the optimal sizing of DG is chosen depends on the penetration level of generator. Reliability indices can be evaluated depending on the failure rate(λ), repair time(r) and annual outage time(U) in Electrical Transient and Analysis Program (ETAP) software. The case study of this thesis is carried out in 33/11 kV network which is connected Kyatminton Substation, Kyaukse, Middle Myanmar.","PeriodicalId":32708,"journal":{"name":"JAREE Journal on Advanced Research in Electrical Engineering","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrating the PV-Diesel Hybrid System for Reliability Improvement in Distribution System\",\"authors\":\"C. C. Myint, Ohn Zin Lin, Soe Soe Ei Aung\",\"doi\":\"10.12962/j25796216.v3.i2.89\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In Myanmar, as the main power generation is hydro power generation. the utility cannot supply sufficient power to customers during the dry season. Besides interruptions occur frequently due to aging system and lack of prospered protection. Therefore, reliability is an urgent issue in Myanmar. As a result of unbalance between generation and load, the distribution system is getting poor voltage profile, instability and high power losses in high load condition. According to network characteristics, the failure of a component always leads to consequence interruption in a radial distribution system.  Therefore, it is a must consideration to mitigate these challenges to enhance the system reliability. There are many techniques to solve the reliability problems such as reclosers, switching devices (manual and automated switches), system reconfiguration, feeder re-conducting and integration of distributed generation (DG). In this paper, system reliability assessment is evaluated in detail with the integration of the distributed generation such as PV-Diesel Hybrid System. The location of DG is chosen according to the expected energy not supply (EENS) and the voltage drop in proposed system. Next, the optimal sizing of DG is chosen depends on the penetration level of generator. Reliability indices can be evaluated depending on the failure rate(λ), repair time(r) and annual outage time(U) in Electrical Transient and Analysis Program (ETAP) software. The case study of this thesis is carried out in 33/11 kV network which is connected Kyatminton Substation, Kyaukse, Middle Myanmar.\",\"PeriodicalId\":32708,\"journal\":{\"name\":\"JAREE Journal on Advanced Research in Electrical Engineering\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JAREE Journal on Advanced Research in Electrical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12962/j25796216.v3.i2.89\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JAREE Journal on Advanced Research in Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12962/j25796216.v3.i2.89","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在缅甸,作为主要发电方式的是水力发电。该公司在旱季无法为客户提供足够的电力。此外,由于系统老化和缺乏有效的保护,频繁发生中断。因此,可靠性在缅甸是一个紧迫的问题。由于发电负荷不平衡,配电系统在高负荷工况下出现电压分布差、不稳定、功率损耗大等问题。根据电网的特点,在径向配电系统中,某一部件的故障往往会导致后果中断。因此,如何缓解这些挑战,提高系统的可靠性是必须考虑的问题。有许多技术可以解决可靠性问题,如重合闸、开关装置(手动和自动开关)、系统重构、馈线重导和分布式发电的集成。本文以光伏-柴油混合发电系统为例,对分布式发电系统的可靠性进行了详细的评估。DG的位置是根据系统的预期不供电能量(EENS)和电压降选择的。其次,根据发电机的穿透水平选择DG的最佳尺寸。可靠性指标可以根据电气暂态分析程序(ETAP)软件中的故障率(λ)、维修时间(r)和年停机时间(U)来评估。本文的案例研究是在缅甸中部皎泽的皎敏顿变电站连接的33/11 kV电网中进行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Integrating the PV-Diesel Hybrid System for Reliability Improvement in Distribution System
In Myanmar, as the main power generation is hydro power generation. the utility cannot supply sufficient power to customers during the dry season. Besides interruptions occur frequently due to aging system and lack of prospered protection. Therefore, reliability is an urgent issue in Myanmar. As a result of unbalance between generation and load, the distribution system is getting poor voltage profile, instability and high power losses in high load condition. According to network characteristics, the failure of a component always leads to consequence interruption in a radial distribution system.  Therefore, it is a must consideration to mitigate these challenges to enhance the system reliability. There are many techniques to solve the reliability problems such as reclosers, switching devices (manual and automated switches), system reconfiguration, feeder re-conducting and integration of distributed generation (DG). In this paper, system reliability assessment is evaluated in detail with the integration of the distributed generation such as PV-Diesel Hybrid System. The location of DG is chosen according to the expected energy not supply (EENS) and the voltage drop in proposed system. Next, the optimal sizing of DG is chosen depends on the penetration level of generator. Reliability indices can be evaluated depending on the failure rate(λ), repair time(r) and annual outage time(U) in Electrical Transient and Analysis Program (ETAP) software. The case study of this thesis is carried out in 33/11 kV network which is connected Kyatminton Substation, Kyaukse, Middle Myanmar.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
10
审稿时长
24 weeks
期刊最新文献
A new lossless passive snubber with simple structure for pulse width modulation DC-DC converters Prosumer-Based Optimization of Educational Building Grid Connected with Plug-in Electric Vehicle Integration using Modified Firefly Algorithm Pencak Silat Movement Classification Using CNN Based On Body Pose Load Frequency Control by Quadratic Regulator Approach with Compensating Pole using SIMULINK Temperature and Humidity Control System for 20 kV of Cubicle with Multiple Input Multiple Output Fuzzy Logic Controller
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1