Tomoaki Watanabe, Y. Sakai, K. Nagata, O. Terashima, H. Suzuki, T. Hayase, Yasumasa Ito
{"title":"直接数值模拟湍流反应射流的可视化","authors":"Tomoaki Watanabe, Y. Sakai, K. Nagata, O. Terashima, H. Suzuki, T. Hayase, Yasumasa Ito","doi":"10.1142/S1793962313410018","DOIUrl":null,"url":null,"abstract":"Direct numerical simulation (DNS) of turbulent planar jet with a second-order chemical reaction (A + B → R) is performed to investigate the processes of mixing and chemical reactions in spatially developing turbulent free shear flows. Reactant A is premixed into the jet flow, and reactant B is premixed into the ambient flow. DNS is performed at three different Damkohler numbers (Da = 0.1,1, and 10). Damkohler number is a ratio of a time scale of a flow to that of chemical reactions, and in this study, the large Da means a fast chemical reaction, and the small Da means a slow chemical reaction. The visualization of velocity field shows that the jet flow is developed by entraining the ambient fluid. The visualization of concentration of reactant A shows that concentration of reactant A for Da = 1 and 10 becomes very small in the downstream region because the chemical reaction consumes the reactants and reactant A is diffused with the jet development. By comparison of the profiles of chemical reaction rate and concentration of product R, it is found that product R for Da = 10 is produced by the chemical reaction at the interface between the jet and the ambient fluids and is diffused into the jet flow, whereas product R for Da = 0.1 is produced in the jet flow after reactants A and B are well mixed.","PeriodicalId":45889,"journal":{"name":"International Journal of Modeling Simulation and Scientific Computing","volume":"9 1","pages":"1341001"},"PeriodicalIF":0.9000,"publicationDate":"2013-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"VISUALIZATION OF TURBULENT REACTIVE JET BY USING DIRECT NUMERICAL SIMULATION\",\"authors\":\"Tomoaki Watanabe, Y. Sakai, K. Nagata, O. Terashima, H. Suzuki, T. Hayase, Yasumasa Ito\",\"doi\":\"10.1142/S1793962313410018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Direct numerical simulation (DNS) of turbulent planar jet with a second-order chemical reaction (A + B → R) is performed to investigate the processes of mixing and chemical reactions in spatially developing turbulent free shear flows. Reactant A is premixed into the jet flow, and reactant B is premixed into the ambient flow. DNS is performed at three different Damkohler numbers (Da = 0.1,1, and 10). Damkohler number is a ratio of a time scale of a flow to that of chemical reactions, and in this study, the large Da means a fast chemical reaction, and the small Da means a slow chemical reaction. The visualization of velocity field shows that the jet flow is developed by entraining the ambient fluid. The visualization of concentration of reactant A shows that concentration of reactant A for Da = 1 and 10 becomes very small in the downstream region because the chemical reaction consumes the reactants and reactant A is diffused with the jet development. By comparison of the profiles of chemical reaction rate and concentration of product R, it is found that product R for Da = 10 is produced by the chemical reaction at the interface between the jet and the ambient fluids and is diffused into the jet flow, whereas product R for Da = 0.1 is produced in the jet flow after reactants A and B are well mixed.\",\"PeriodicalId\":45889,\"journal\":{\"name\":\"International Journal of Modeling Simulation and Scientific Computing\",\"volume\":\"9 1\",\"pages\":\"1341001\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2013-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Modeling Simulation and Scientific Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S1793962313410018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Modeling Simulation and Scientific Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S1793962313410018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
VISUALIZATION OF TURBULENT REACTIVE JET BY USING DIRECT NUMERICAL SIMULATION
Direct numerical simulation (DNS) of turbulent planar jet with a second-order chemical reaction (A + B → R) is performed to investigate the processes of mixing and chemical reactions in spatially developing turbulent free shear flows. Reactant A is premixed into the jet flow, and reactant B is premixed into the ambient flow. DNS is performed at three different Damkohler numbers (Da = 0.1,1, and 10). Damkohler number is a ratio of a time scale of a flow to that of chemical reactions, and in this study, the large Da means a fast chemical reaction, and the small Da means a slow chemical reaction. The visualization of velocity field shows that the jet flow is developed by entraining the ambient fluid. The visualization of concentration of reactant A shows that concentration of reactant A for Da = 1 and 10 becomes very small in the downstream region because the chemical reaction consumes the reactants and reactant A is diffused with the jet development. By comparison of the profiles of chemical reaction rate and concentration of product R, it is found that product R for Da = 10 is produced by the chemical reaction at the interface between the jet and the ambient fluids and is diffused into the jet flow, whereas product R for Da = 0.1 is produced in the jet flow after reactants A and B are well mixed.