Chengyang Li, Hongyi Li, Libo Zhang, Yubo Ma, Tianfu Wang
{"title":"负载型超低含量Rh催化剂上双环戊二烯氢甲酰化制单酰基三环癸烯","authors":"Chengyang Li, Hongyi Li, Libo Zhang, Yubo Ma, Tianfu Wang","doi":"10.3184/146867818X15233705894356","DOIUrl":null,"url":null,"abstract":"Five types of 0.006 wt% Rh catalyst supported on the surfaces of Al2O3, ZnO, TiO2(rutile), TiO2(anatase) and CeO2 were prepared by the incipient wetness method and used to catalyse the conversion of dicyclopentadiene (DCPD) to monoformyltricyclodecenes (MFTD). The 0.006 wt% Rh/ZnO catalyst showed the highest performance of the catalysts investigated and a 95.5% MFTD yield with 100% MFTD selectivity could be achieved. This suggested that there may be a key role for the carrier on the catalytic performance in the DCPD hydroformylation. Furthermore, the kinetic profiles for DCPD hydroformylation over the 0.006 wt% Rh/ZnO catalyst have been examined systematically to explore the effect of reaction temperature on the catalytic performance. These data collectively suggested that a specific reaction temperature might enhance DCPD hydroformylation, possibly owing to agglomeration of the active sites at higher reaction temperatures.","PeriodicalId":20859,"journal":{"name":"Progress in Reaction Kinetics and Mechanism","volume":"47 1","pages":"166 - 172"},"PeriodicalIF":2.1000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Hydroformylation of Dicyclopentadiene to Monoformyltricyclodecenes over Supported Ultra-Low Content Rh Catalysts\",\"authors\":\"Chengyang Li, Hongyi Li, Libo Zhang, Yubo Ma, Tianfu Wang\",\"doi\":\"10.3184/146867818X15233705894356\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Five types of 0.006 wt% Rh catalyst supported on the surfaces of Al2O3, ZnO, TiO2(rutile), TiO2(anatase) and CeO2 were prepared by the incipient wetness method and used to catalyse the conversion of dicyclopentadiene (DCPD) to monoformyltricyclodecenes (MFTD). The 0.006 wt% Rh/ZnO catalyst showed the highest performance of the catalysts investigated and a 95.5% MFTD yield with 100% MFTD selectivity could be achieved. This suggested that there may be a key role for the carrier on the catalytic performance in the DCPD hydroformylation. Furthermore, the kinetic profiles for DCPD hydroformylation over the 0.006 wt% Rh/ZnO catalyst have been examined systematically to explore the effect of reaction temperature on the catalytic performance. These data collectively suggested that a specific reaction temperature might enhance DCPD hydroformylation, possibly owing to agglomeration of the active sites at higher reaction temperatures.\",\"PeriodicalId\":20859,\"journal\":{\"name\":\"Progress in Reaction Kinetics and Mechanism\",\"volume\":\"47 1\",\"pages\":\"166 - 172\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Reaction Kinetics and Mechanism\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.3184/146867818X15233705894356\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Reaction Kinetics and Mechanism","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3184/146867818X15233705894356","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Hydroformylation of Dicyclopentadiene to Monoformyltricyclodecenes over Supported Ultra-Low Content Rh Catalysts
Five types of 0.006 wt% Rh catalyst supported on the surfaces of Al2O3, ZnO, TiO2(rutile), TiO2(anatase) and CeO2 were prepared by the incipient wetness method and used to catalyse the conversion of dicyclopentadiene (DCPD) to monoformyltricyclodecenes (MFTD). The 0.006 wt% Rh/ZnO catalyst showed the highest performance of the catalysts investigated and a 95.5% MFTD yield with 100% MFTD selectivity could be achieved. This suggested that there may be a key role for the carrier on the catalytic performance in the DCPD hydroformylation. Furthermore, the kinetic profiles for DCPD hydroformylation over the 0.006 wt% Rh/ZnO catalyst have been examined systematically to explore the effect of reaction temperature on the catalytic performance. These data collectively suggested that a specific reaction temperature might enhance DCPD hydroformylation, possibly owing to agglomeration of the active sites at higher reaction temperatures.