{"title":"与商业云产品相比,开源FaaS平台的资源扩展策略","authors":"Johannes Manner, G. Wirtz","doi":"10.1109/CLOUD55607.2022.00020","DOIUrl":null,"url":null,"abstract":"Open-source offerings are often investigated when comparing their features to commercial cloud offerings. However, performance benchmarking is rarely executed for open-source tools hosted on-premise nor is it possible to conduct a fair cost comparison due to a lack of resource settings equivalent to cloud scaling strategies.Therefore, we firstly list implemented resource scaling strategies for public and open-source FaaS platforms. Based on this we propose a methodology to calculate an abstract performance measure to compare two platforms with each other. Since all open-source platforms suggest a Kubernetes deployment, we use this measure for a configuration of open-source FaaS platforms based on Kubernetes limits. We tested our approach with CPU intensive functions, considering the difference between single-threaded and multi-threaded functions to avoid wasting resources. With regard to this, we also address the noisy neighbor problem for open-source FaaS platforms by conducting an instance parallelization experiment. Our approach to limit resources leads to consistent results while avoiding an overbooking of resources.","PeriodicalId":54281,"journal":{"name":"IEEE Cloud Computing","volume":"17 1","pages":"40-48"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Resource Scaling Strategies for Open-Source FaaS Platforms compared to Commercial Cloud Offerings\",\"authors\":\"Johannes Manner, G. Wirtz\",\"doi\":\"10.1109/CLOUD55607.2022.00020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Open-source offerings are often investigated when comparing their features to commercial cloud offerings. However, performance benchmarking is rarely executed for open-source tools hosted on-premise nor is it possible to conduct a fair cost comparison due to a lack of resource settings equivalent to cloud scaling strategies.Therefore, we firstly list implemented resource scaling strategies for public and open-source FaaS platforms. Based on this we propose a methodology to calculate an abstract performance measure to compare two platforms with each other. Since all open-source platforms suggest a Kubernetes deployment, we use this measure for a configuration of open-source FaaS platforms based on Kubernetes limits. We tested our approach with CPU intensive functions, considering the difference between single-threaded and multi-threaded functions to avoid wasting resources. With regard to this, we also address the noisy neighbor problem for open-source FaaS platforms by conducting an instance parallelization experiment. Our approach to limit resources leads to consistent results while avoiding an overbooking of resources.\",\"PeriodicalId\":54281,\"journal\":{\"name\":\"IEEE Cloud Computing\",\"volume\":\"17 1\",\"pages\":\"40-48\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Cloud Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CLOUD55607.2022.00020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Cloud Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CLOUD55607.2022.00020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
Resource Scaling Strategies for Open-Source FaaS Platforms compared to Commercial Cloud Offerings
Open-source offerings are often investigated when comparing their features to commercial cloud offerings. However, performance benchmarking is rarely executed for open-source tools hosted on-premise nor is it possible to conduct a fair cost comparison due to a lack of resource settings equivalent to cloud scaling strategies.Therefore, we firstly list implemented resource scaling strategies for public and open-source FaaS platforms. Based on this we propose a methodology to calculate an abstract performance measure to compare two platforms with each other. Since all open-source platforms suggest a Kubernetes deployment, we use this measure for a configuration of open-source FaaS platforms based on Kubernetes limits. We tested our approach with CPU intensive functions, considering the difference between single-threaded and multi-threaded functions to avoid wasting resources. With regard to this, we also address the noisy neighbor problem for open-source FaaS platforms by conducting an instance parallelization experiment. Our approach to limit resources leads to consistent results while avoiding an overbooking of resources.
期刊介绍:
Cessation.
IEEE Cloud Computing is committed to the timely publication of peer-reviewed articles that provide innovative research ideas, applications results, and case studies in all areas of cloud computing. Topics relating to novel theory, algorithms, performance analyses and applications of techniques are covered. More specifically: Cloud software, Cloud security, Trade-offs between privacy and utility of cloud, Cloud in the business environment, Cloud economics, Cloud governance, Migrating to the cloud, Cloud standards, Development tools, Backup and recovery, Interoperability, Applications management, Data analytics, Communications protocols, Mobile cloud, Private clouds, Liability issues for data loss on clouds, Data integration, Big data, Cloud education, Cloud skill sets, Cloud energy consumption, The architecture of cloud computing, Applications in commerce, education, and industry, Infrastructure as a Service (IaaS), Platform as a Service (PaaS), Software as a Service (SaaS), Business Process as a Service (BPaaS)