Simin Nazarnezhad, M. Salehi, H. Samadian, Arian Ehtermi, N. Kasaiyan, H. Khastar, Ghasem Abbaszadeh-Goudarzi, Nariman Rezaei Kolarijani, Hodays Yeganehfard, H. Ziaei
{"title":"含维甲酸的多孔海藻酸盐水凝胶用于皮肤伤口愈合的体外和体内评价","authors":"Simin Nazarnezhad, M. Salehi, H. Samadian, Arian Ehtermi, N. Kasaiyan, H. Khastar, Ghasem Abbaszadeh-Goudarzi, Nariman Rezaei Kolarijani, Hodays Yeganehfard, H. Ziaei","doi":"10.1177/08839115221104071","DOIUrl":null,"url":null,"abstract":"The current study’s main aim was to fabricate and evaluate alginate (Alg) hydrogel containing retinoic acid (RA) as wound healing materials. Different RA concentrations (2, 10, and 50% w/w) were incorporated into the hydrogel. The results showed that the prepared hydrogels had a porous structure with a pore size of 69.69 ± 22.1 µm for pure Alg hydrogel and 78.44 ± 27.8 µm for Alg/RA hydrogel. The swelling measurement showed that the hydrogels swelled up to 65% and the incorporation of RA reduced the degree of swelling . The in vitro studies confirmed the hemo- and biocompatibility of the Alg/RA 2% and increasing the RA concentration induced hemolysis and toxic effects. The animal studies showed that the lowest RA concentration resulted in the best treatment outcome while increasing the RA concentration suppressed the healing process. In conclusion, these results showed that RA induced wound healing process at low concentration, and the prepared hydrogel could be used as the wound healing materials.","PeriodicalId":15038,"journal":{"name":"Journal of Bioactive and Compatible Polymers","volume":"115 1","pages":"332 - 342"},"PeriodicalIF":2.1000,"publicationDate":"2022-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"In vitro and in vivo evaluation of porous alginate hydrogel containing retinoic acid for skin wound healing applications\",\"authors\":\"Simin Nazarnezhad, M. Salehi, H. Samadian, Arian Ehtermi, N. Kasaiyan, H. Khastar, Ghasem Abbaszadeh-Goudarzi, Nariman Rezaei Kolarijani, Hodays Yeganehfard, H. Ziaei\",\"doi\":\"10.1177/08839115221104071\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The current study’s main aim was to fabricate and evaluate alginate (Alg) hydrogel containing retinoic acid (RA) as wound healing materials. Different RA concentrations (2, 10, and 50% w/w) were incorporated into the hydrogel. The results showed that the prepared hydrogels had a porous structure with a pore size of 69.69 ± 22.1 µm for pure Alg hydrogel and 78.44 ± 27.8 µm for Alg/RA hydrogel. The swelling measurement showed that the hydrogels swelled up to 65% and the incorporation of RA reduced the degree of swelling . The in vitro studies confirmed the hemo- and biocompatibility of the Alg/RA 2% and increasing the RA concentration induced hemolysis and toxic effects. The animal studies showed that the lowest RA concentration resulted in the best treatment outcome while increasing the RA concentration suppressed the healing process. In conclusion, these results showed that RA induced wound healing process at low concentration, and the prepared hydrogel could be used as the wound healing materials.\",\"PeriodicalId\":15038,\"journal\":{\"name\":\"Journal of Bioactive and Compatible Polymers\",\"volume\":\"115 1\",\"pages\":\"332 - 342\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2022-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Bioactive and Compatible Polymers\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/08839115221104071\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bioactive and Compatible Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/08839115221104071","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
In vitro and in vivo evaluation of porous alginate hydrogel containing retinoic acid for skin wound healing applications
The current study’s main aim was to fabricate and evaluate alginate (Alg) hydrogel containing retinoic acid (RA) as wound healing materials. Different RA concentrations (2, 10, and 50% w/w) were incorporated into the hydrogel. The results showed that the prepared hydrogels had a porous structure with a pore size of 69.69 ± 22.1 µm for pure Alg hydrogel and 78.44 ± 27.8 µm for Alg/RA hydrogel. The swelling measurement showed that the hydrogels swelled up to 65% and the incorporation of RA reduced the degree of swelling . The in vitro studies confirmed the hemo- and biocompatibility of the Alg/RA 2% and increasing the RA concentration induced hemolysis and toxic effects. The animal studies showed that the lowest RA concentration resulted in the best treatment outcome while increasing the RA concentration suppressed the healing process. In conclusion, these results showed that RA induced wound healing process at low concentration, and the prepared hydrogel could be used as the wound healing materials.
期刊介绍:
The use and importance of biomedical polymers, especially in pharmacology, is growing rapidly. The Journal of Bioactive and Compatible Polymers is a fully peer-reviewed scholarly journal that provides biomedical polymer scientists and researchers with new information on important advances in this field. Examples of specific areas of interest to the journal include: polymeric drugs and drug design; polymeric functionalization and structures related to biological activity or compatibility; natural polymer modification to achieve specific biological activity or compatibility; enzyme modelling by polymers; membranes for biological use; liposome stabilization and cell modeling. This journal is a member of the Committee on Publication Ethics (COPE).