{"title":"扩散热对传热传质麦克斯韦流体MHD流动的影响","authors":"M. Ramzan, Z. Nisa, M. Nazar","doi":"10.5098/hmt.19.12","DOIUrl":null,"url":null,"abstract":"A magnetohydrodynamics (MHD) flow of fractional Maxwell fluid past an exponentially accelerated vertical plate is considered. In addition, other factors such as heat generation and chemical reaction are used in the problem. The flow model is solved using Caputo fractional derivative. Initially, the governing equations are made non-dimensional and then solved by Laplace transform. The influence of different parameters like diffusion thermo, fractional parameter, Magnetic field, chemical reaction, Prandtl number and Maxwell parameter are discussed through numerous graphs. From figures, it is observed that fluid motion decreases with increasing values of Schmidt number and chemical reaction, whereas velocity field decreases with decreasing values of diffusion thermo and heat generation.","PeriodicalId":46200,"journal":{"name":"Frontiers in Heat and Mass Transfer","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2022-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"EFFECT OF DIFFUSION-THERMO ON MHD FLOW OF MAXWELL FLUID WITH HEAT AND MASS TRANSFER\",\"authors\":\"M. Ramzan, Z. Nisa, M. Nazar\",\"doi\":\"10.5098/hmt.19.12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A magnetohydrodynamics (MHD) flow of fractional Maxwell fluid past an exponentially accelerated vertical plate is considered. In addition, other factors such as heat generation and chemical reaction are used in the problem. The flow model is solved using Caputo fractional derivative. Initially, the governing equations are made non-dimensional and then solved by Laplace transform. The influence of different parameters like diffusion thermo, fractional parameter, Magnetic field, chemical reaction, Prandtl number and Maxwell parameter are discussed through numerous graphs. From figures, it is observed that fluid motion decreases with increasing values of Schmidt number and chemical reaction, whereas velocity field decreases with decreasing values of diffusion thermo and heat generation.\",\"PeriodicalId\":46200,\"journal\":{\"name\":\"Frontiers in Heat and Mass Transfer\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Heat and Mass Transfer\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5098/hmt.19.12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"THERMODYNAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Heat and Mass Transfer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5098/hmt.19.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
EFFECT OF DIFFUSION-THERMO ON MHD FLOW OF MAXWELL FLUID WITH HEAT AND MASS TRANSFER
A magnetohydrodynamics (MHD) flow of fractional Maxwell fluid past an exponentially accelerated vertical plate is considered. In addition, other factors such as heat generation and chemical reaction are used in the problem. The flow model is solved using Caputo fractional derivative. Initially, the governing equations are made non-dimensional and then solved by Laplace transform. The influence of different parameters like diffusion thermo, fractional parameter, Magnetic field, chemical reaction, Prandtl number and Maxwell parameter are discussed through numerous graphs. From figures, it is observed that fluid motion decreases with increasing values of Schmidt number and chemical reaction, whereas velocity field decreases with decreasing values of diffusion thermo and heat generation.
期刊介绍:
Frontiers in Heat and Mass Transfer is a free-access and peer-reviewed online journal that provides a central vehicle for the exchange of basic ideas in heat and mass transfer between researchers and engineers around the globe. It disseminates information of permanent interest in the area of heat and mass transfer. Theory and fundamental research in heat and mass transfer, numerical simulations and algorithms, experimental techniques and measurements as applied to all kinds of current and emerging problems are welcome. Contributions to the journal consist of original research on heat and mass transfer in equipment, thermal systems, thermodynamic processes, nanotechnology, biotechnology, information technology, energy and power applications, as well as security and related topics.