基于形态属性的交通建模车辆跟踪

Varsha Kshirsagar-Deshpande, T. Patel, Ali Abbas, Khushbhu Bhatt, R. Bhalerao, Jiten Shah
{"title":"基于形态属性的交通建模车辆跟踪","authors":"Varsha Kshirsagar-Deshpande, T. Patel, Ali Abbas, Khushbhu Bhatt, R. Bhalerao, Jiten Shah","doi":"10.1109/InGARSS48198.2020.9358966","DOIUrl":null,"url":null,"abstract":"In the proposed method, an innovative image processing technique for vehicle tracking at a roundabout is described. Background subtraction is applied to get the objects (vehicles) in the foreground. The objects are thus obtained and tracked using morphological operations and object properties. In the video stream, tracking is established by tracing the center of the target object. In present case,four different directions of incoming traffic are considered and four vehicle classes are defined. Implementation of above mentioned method achieved promising result of accuracy greater than 90 % for moderate traffic conditions where occlusion is not an issue.","PeriodicalId":6797,"journal":{"name":"2020 IEEE India Geoscience and Remote Sensing Symposium (InGARSS)","volume":"10 1","pages":"98-101"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Vehicle Tracking Using Morphological Properties for Traffic Modelling\",\"authors\":\"Varsha Kshirsagar-Deshpande, T. Patel, Ali Abbas, Khushbhu Bhatt, R. Bhalerao, Jiten Shah\",\"doi\":\"10.1109/InGARSS48198.2020.9358966\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the proposed method, an innovative image processing technique for vehicle tracking at a roundabout is described. Background subtraction is applied to get the objects (vehicles) in the foreground. The objects are thus obtained and tracked using morphological operations and object properties. In the video stream, tracking is established by tracing the center of the target object. In present case,four different directions of incoming traffic are considered and four vehicle classes are defined. Implementation of above mentioned method achieved promising result of accuracy greater than 90 % for moderate traffic conditions where occlusion is not an issue.\",\"PeriodicalId\":6797,\"journal\":{\"name\":\"2020 IEEE India Geoscience and Remote Sensing Symposium (InGARSS)\",\"volume\":\"10 1\",\"pages\":\"98-101\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE India Geoscience and Remote Sensing Symposium (InGARSS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/InGARSS48198.2020.9358966\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE India Geoscience and Remote Sensing Symposium (InGARSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/InGARSS48198.2020.9358966","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在该方法中,描述了一种创新的环形交叉口车辆跟踪图像处理技术。背景减法用于获得前景中的物体(车辆)。因此,使用形态学操作和对象属性获得和跟踪对象。在视频流中,通过跟踪目标物体的中心来建立跟踪。在本案例中,考虑了四种不同方向的入路交通,并定义了四种车辆类别。上述方法的实现在不存在遮挡问题的中等交通条件下取得了超过90%的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Vehicle Tracking Using Morphological Properties for Traffic Modelling
In the proposed method, an innovative image processing technique for vehicle tracking at a roundabout is described. Background subtraction is applied to get the objects (vehicles) in the foreground. The objects are thus obtained and tracked using morphological operations and object properties. In the video stream, tracking is established by tracing the center of the target object. In present case,four different directions of incoming traffic are considered and four vehicle classes are defined. Implementation of above mentioned method achieved promising result of accuracy greater than 90 % for moderate traffic conditions where occlusion is not an issue.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
InGARSS 2020 Copyright Page Automatic Road Delineation Using Deep Neural Network Sparse Representation of Injected Details for MRA-Based Pansharpening InGARSS 2020 Reviewers Experimental Analysis of the Hongqi-1 H9 Satellite Imagery for Geometric Positioning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1