求解随机多目标拆解排序与线路平衡问题的多目标离散灰狼优化算法

Zhiwei Zhang, Xiwang Guo, Mengchu Zhou, Shixin Liu, Liang Qi
{"title":"求解随机多目标拆解排序与线路平衡问题的多目标离散灰狼优化算法","authors":"Zhiwei Zhang, Xiwang Guo, Mengchu Zhou, Shixin Liu, Liang Qi","doi":"10.1109/SMC42975.2020.9283184","DOIUrl":null,"url":null,"abstract":"There is a growing concern in recycling plants for minimizing the negative environmental impacts (such as carbon emissions) of disassembling end-of-life products. Uncertainty caused by their different usage stages exists when disassembling them. In this paper, we propose a stochastic multi-objective disassembly sequencing and line balancing problem based on an AND/OR graph. By considering disassembly failure risk, we construct objectives of maximizing profit and minimizing carbon emission and energy consumption to help sustain economic development. Then, we propose a novel multi-objective discrete grey wolf optimizer to solve it. We show its effectiveness via a product example. The results show the superiority of the proposed algorithm over classical non-dominated sorting genetic algorithm II and multi-objective evolutionary algorithm based on decomposition.","PeriodicalId":6718,"journal":{"name":"2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC)","volume":"10 1","pages":"682-687"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Multi-objective Discrete Grey Wolf Optimizer for Solving Stochastic Multi-objective Disassembly Sequencing and Line Balancing Problem\",\"authors\":\"Zhiwei Zhang, Xiwang Guo, Mengchu Zhou, Shixin Liu, Liang Qi\",\"doi\":\"10.1109/SMC42975.2020.9283184\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There is a growing concern in recycling plants for minimizing the negative environmental impacts (such as carbon emissions) of disassembling end-of-life products. Uncertainty caused by their different usage stages exists when disassembling them. In this paper, we propose a stochastic multi-objective disassembly sequencing and line balancing problem based on an AND/OR graph. By considering disassembly failure risk, we construct objectives of maximizing profit and minimizing carbon emission and energy consumption to help sustain economic development. Then, we propose a novel multi-objective discrete grey wolf optimizer to solve it. We show its effectiveness via a product example. The results show the superiority of the proposed algorithm over classical non-dominated sorting genetic algorithm II and multi-objective evolutionary algorithm based on decomposition.\",\"PeriodicalId\":6718,\"journal\":{\"name\":\"2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC)\",\"volume\":\"10 1\",\"pages\":\"682-687\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SMC42975.2020.9283184\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMC42975.2020.9283184","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

人们越来越关注回收工厂,以尽量减少拆卸报废产品对环境的负面影响(如碳排放)。拆解时,由于使用阶段不同,存在不确定性。本文提出了一个基于and /OR图的随机多目标拆解排序和生产线平衡问题。通过考虑拆解失效风险,构建利润最大化、碳排放和能耗最小化的目标,帮助经济持续发展。然后,我们提出了一种新的多目标离散灰狼优化器来解决这个问题。我们通过一个产品实例来证明它的有效性。结果表明,该算法优于经典的非支配排序遗传算法II和基于分解的多目标进化算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-objective Discrete Grey Wolf Optimizer for Solving Stochastic Multi-objective Disassembly Sequencing and Line Balancing Problem
There is a growing concern in recycling plants for minimizing the negative environmental impacts (such as carbon emissions) of disassembling end-of-life products. Uncertainty caused by their different usage stages exists when disassembling them. In this paper, we propose a stochastic multi-objective disassembly sequencing and line balancing problem based on an AND/OR graph. By considering disassembly failure risk, we construct objectives of maximizing profit and minimizing carbon emission and energy consumption to help sustain economic development. Then, we propose a novel multi-objective discrete grey wolf optimizer to solve it. We show its effectiveness via a product example. The results show the superiority of the proposed algorithm over classical non-dominated sorting genetic algorithm II and multi-objective evolutionary algorithm based on decomposition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
At-the-Edge Data Processing for Low Latency High Throughput Machine Learning Algorithms Machine Learning for First Principles Calculations of Material Properties for Ferromagnetic Materials Mobility Aware Computation Offloading Model for Edge Computing Toward an Autonomous Workflow for Single Crystal Neutron Diffraction Virtual Infrastructure Twins: Software Testing Platforms for Computing-Instrument Ecosystems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1