可证明正确的高级时序分析没有路径敏化

S. Bhattacharya, S. Dey, F. Brglez
{"title":"可证明正确的高级时序分析没有路径敏化","authors":"S. Bhattacharya, S. Dey, F. Brglez","doi":"10.1109/ICCAD.1994.629905","DOIUrl":null,"url":null,"abstract":"This paper addresses the problem of true delay estimation during high level design. The existing delay estimation techniques either estimate the topological delay of the circuit which may be pessimistic, or use gate-level timing analysis for calculating the true delay, which may be prohibitively expensive.\nWe show that the paths in the implementation of a behavioral specification can be partitioned into two sets, SP and UP. While the paths in SP can affect the delay of the circuit, the paths in UP cannot. Consequently, the true delay of the resulting circuit can be computed by just measuring the topological delay of the paths in SP, eliminating the need for the computationally intensive process of path sensitization. Experimental results show that high-level true delay estimation can be done very fast, even when gate-level true delay estimation becomes computationally infeasible. The high-level delay estimates are verified by comparing with delay estimates obtained by gate-level timing analysis on the actual implementation.","PeriodicalId":90518,"journal":{"name":"ICCAD. IEEE/ACM International Conference on Computer-Aided Design","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1994-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Provably Correct High-level Timing Analysis Without Path Sensitization\",\"authors\":\"S. Bhattacharya, S. Dey, F. Brglez\",\"doi\":\"10.1109/ICCAD.1994.629905\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses the problem of true delay estimation during high level design. The existing delay estimation techniques either estimate the topological delay of the circuit which may be pessimistic, or use gate-level timing analysis for calculating the true delay, which may be prohibitively expensive.\\nWe show that the paths in the implementation of a behavioral specification can be partitioned into two sets, SP and UP. While the paths in SP can affect the delay of the circuit, the paths in UP cannot. Consequently, the true delay of the resulting circuit can be computed by just measuring the topological delay of the paths in SP, eliminating the need for the computationally intensive process of path sensitization. Experimental results show that high-level true delay estimation can be done very fast, even when gate-level true delay estimation becomes computationally infeasible. The high-level delay estimates are verified by comparing with delay estimates obtained by gate-level timing analysis on the actual implementation.\",\"PeriodicalId\":90518,\"journal\":{\"name\":\"ICCAD. IEEE/ACM International Conference on Computer-Aided Design\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICCAD. IEEE/ACM International Conference on Computer-Aided Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCAD.1994.629905\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICCAD. IEEE/ACM International Conference on Computer-Aided Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAD.1994.629905","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

本文研究了高电平设计中的真时延估计问题。现有的延迟估计技术要么估计电路的拓扑延迟,这可能是悲观的,要么使用门级时序分析来计算真正的延迟,这可能是非常昂贵的。我们证明了行为规范实现中的路径可以划分为两个集合,SP和UP。SP中的路径可以影响电路的延迟,而UP中的路径则不能。因此,仅通过测量SP中路径的拓扑延迟就可以计算出所得到电路的真实延迟,从而消除了计算密集型的路径敏化过程。实验结果表明,即使门级真延迟估计在计算上变得不可行的情况下,也可以非常快速地进行高级真延迟估计。通过与实际实现中门级时序分析得到的时延估计进行比较,验证了高阶时延估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Provably Correct High-level Timing Analysis Without Path Sensitization
This paper addresses the problem of true delay estimation during high level design. The existing delay estimation techniques either estimate the topological delay of the circuit which may be pessimistic, or use gate-level timing analysis for calculating the true delay, which may be prohibitively expensive. We show that the paths in the implementation of a behavioral specification can be partitioned into two sets, SP and UP. While the paths in SP can affect the delay of the circuit, the paths in UP cannot. Consequently, the true delay of the resulting circuit can be computed by just measuring the topological delay of the paths in SP, eliminating the need for the computationally intensive process of path sensitization. Experimental results show that high-level true delay estimation can be done very fast, even when gate-level true delay estimation becomes computationally infeasible. The high-level delay estimates are verified by comparing with delay estimates obtained by gate-level timing analysis on the actual implementation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Intelligent Real-time Human Activity Recognition Using Wi-Fi Signals A New H∞ Filter for a Nonlinear Singular System in the Time Domain Stability Analysis of an Anaerobic Wastewater Treatment Model Optimal sliding mode control for a pendulum system A new time domain functional observer design for bilinear system with constant time delay and unknown input
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1