Michael W. Hopwood, T. Gunda, H. Seigneur, Joseph Walters
{"title":"主成分分析在光伏系统物理故障轨迹分类中的价值评估","authors":"Michael W. Hopwood, T. Gunda, H. Seigneur, Joseph Walters","doi":"10.1109/PVSC45281.2020.9300601","DOIUrl":null,"url":null,"abstract":"Principal component analysis (PCA) reduces dimensionality by generating uncorrelated variables and improves the interpretability of the sample space. This analysis focused on assessing the value of PCA for improving the classification accuracy of failures within current-voltage (IV) traces. Our results show that combining PCA with random forests improves classification by only ∼1% (bringing the accuracy to >99%), compared to a baseline of only random forests (without PCA) of >98%. The inclusion of PCA, however, does provide an opportunity to study an interesting representation of all of the features on a single, two-dimensional feature space. A visualization of the first two principal components (similar to IV profile but rotated) captures how the inclusion of a current differential feature causes a notable separation between failure modes due to their effect on the slope. This work continues the discussion of generating different ways of extracting information from the IV curve, which can help with failure classification - especially for failures that only exhibit marginal profile changes in IV curves.","PeriodicalId":6773,"journal":{"name":"2020 47th IEEE Photovoltaic Specialists Conference (PVSC)","volume":"10 1","pages":"0798-0802"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An assessment of the value of principal component analysis for photovoltaic IV trace classification of physically-induced failures\",\"authors\":\"Michael W. Hopwood, T. Gunda, H. Seigneur, Joseph Walters\",\"doi\":\"10.1109/PVSC45281.2020.9300601\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Principal component analysis (PCA) reduces dimensionality by generating uncorrelated variables and improves the interpretability of the sample space. This analysis focused on assessing the value of PCA for improving the classification accuracy of failures within current-voltage (IV) traces. Our results show that combining PCA with random forests improves classification by only ∼1% (bringing the accuracy to >99%), compared to a baseline of only random forests (without PCA) of >98%. The inclusion of PCA, however, does provide an opportunity to study an interesting representation of all of the features on a single, two-dimensional feature space. A visualization of the first two principal components (similar to IV profile but rotated) captures how the inclusion of a current differential feature causes a notable separation between failure modes due to their effect on the slope. This work continues the discussion of generating different ways of extracting information from the IV curve, which can help with failure classification - especially for failures that only exhibit marginal profile changes in IV curves.\",\"PeriodicalId\":6773,\"journal\":{\"name\":\"2020 47th IEEE Photovoltaic Specialists Conference (PVSC)\",\"volume\":\"10 1\",\"pages\":\"0798-0802\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 47th IEEE Photovoltaic Specialists Conference (PVSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PVSC45281.2020.9300601\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 47th IEEE Photovoltaic Specialists Conference (PVSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC45281.2020.9300601","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An assessment of the value of principal component analysis for photovoltaic IV trace classification of physically-induced failures
Principal component analysis (PCA) reduces dimensionality by generating uncorrelated variables and improves the interpretability of the sample space. This analysis focused on assessing the value of PCA for improving the classification accuracy of failures within current-voltage (IV) traces. Our results show that combining PCA with random forests improves classification by only ∼1% (bringing the accuracy to >99%), compared to a baseline of only random forests (without PCA) of >98%. The inclusion of PCA, however, does provide an opportunity to study an interesting representation of all of the features on a single, two-dimensional feature space. A visualization of the first two principal components (similar to IV profile but rotated) captures how the inclusion of a current differential feature causes a notable separation between failure modes due to their effect on the slope. This work continues the discussion of generating different ways of extracting information from the IV curve, which can help with failure classification - especially for failures that only exhibit marginal profile changes in IV curves.