Vera Cabarrão, Helena Moniz, Fernando Batista, Jaime Ferreira, I. Trancoso, Ana Isabel Mata
{"title":"欧洲葡萄牙语语篇标记语的跨域分析","authors":"Vera Cabarrão, Helena Moniz, Fernando Batista, Jaime Ferreira, I. Trancoso, Ana Isabel Mata","doi":"10.5087/dad.2018.103","DOIUrl":null,"url":null,"abstract":"This paper presents an analysis of discourse markers in two spontaneous speech corpora for European Portuguese - university lectures and map-task dialogues - and also in a collection of tweets, aiming at contributing to their categorization, scarcely existent for European Portuguese. Our results show that the selection of discourse markers is domain and speaker dependent. We also found that the most frequent discourse markers are similar in all three corpora, despite tweets containing discourse markers not found in the other two corpora. In this multidisciplinary study, comprising both a linguistic perspective and a computational approach, discourse markers are also automatically discriminated from other structural metadata events, namely sentence-like units and disfluencies. Our results show that discourse markers and disfluencies tend to co-occur in the dialogue corpus, but have a complementary distribution in the university lectures. We used three acoustic-prosodic feature sets and machine learning to automatically distinguish between discourse markers, disfluencies and sentence-like units. Our in-domain experiments achieved an accuracy of about 87% in university lectures and 84% in dialogues, in line with our previous results. The eGeMAPS features, commonly used for other paralinguistic tasks, achieved a considerable performance on our data, especially considering the small size of the feature set. Our results suggest that turn-initial discourse markers are usually easier to classify than disfluencies, a result also previously reported in the literature. We conducted a cross-domain evaluation in order to evaluate the robustness of the models across domains. The results achieved are about 11%-12% lower, but we conclude that data from one domain can still be used to classify the same events in the other. Overall, despite the complexity of this task, these are very encouraging state-of-the-art results. Ultimately, using exclusively acoustic-prosodic cues, discourse markers can be fairly discriminated from disfluencies and SUs. In order to better understand the contribution of each feature, we have also reported the impact of the features in both the dialogues and the university lectures. Pitch features are the most relevant ones for the distinction between discourse markers and disfluencies, namely pitch slopes. These features are in line with the wide pitch range of discourse markers, in a continuum from a very compressed pitch range to a very wide one, expressed by total deaccented material or H+L* L* contours, with upstep H tones.","PeriodicalId":37604,"journal":{"name":"Dialogue and Discourse","volume":"4 1","pages":"79-106"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Cross-domain analysis of discourse markers in European Portuguese\",\"authors\":\"Vera Cabarrão, Helena Moniz, Fernando Batista, Jaime Ferreira, I. Trancoso, Ana Isabel Mata\",\"doi\":\"10.5087/dad.2018.103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an analysis of discourse markers in two spontaneous speech corpora for European Portuguese - university lectures and map-task dialogues - and also in a collection of tweets, aiming at contributing to their categorization, scarcely existent for European Portuguese. Our results show that the selection of discourse markers is domain and speaker dependent. We also found that the most frequent discourse markers are similar in all three corpora, despite tweets containing discourse markers not found in the other two corpora. In this multidisciplinary study, comprising both a linguistic perspective and a computational approach, discourse markers are also automatically discriminated from other structural metadata events, namely sentence-like units and disfluencies. Our results show that discourse markers and disfluencies tend to co-occur in the dialogue corpus, but have a complementary distribution in the university lectures. We used three acoustic-prosodic feature sets and machine learning to automatically distinguish between discourse markers, disfluencies and sentence-like units. Our in-domain experiments achieved an accuracy of about 87% in university lectures and 84% in dialogues, in line with our previous results. The eGeMAPS features, commonly used for other paralinguistic tasks, achieved a considerable performance on our data, especially considering the small size of the feature set. Our results suggest that turn-initial discourse markers are usually easier to classify than disfluencies, a result also previously reported in the literature. We conducted a cross-domain evaluation in order to evaluate the robustness of the models across domains. The results achieved are about 11%-12% lower, but we conclude that data from one domain can still be used to classify the same events in the other. Overall, despite the complexity of this task, these are very encouraging state-of-the-art results. Ultimately, using exclusively acoustic-prosodic cues, discourse markers can be fairly discriminated from disfluencies and SUs. In order to better understand the contribution of each feature, we have also reported the impact of the features in both the dialogues and the university lectures. Pitch features are the most relevant ones for the distinction between discourse markers and disfluencies, namely pitch slopes. These features are in line with the wide pitch range of discourse markers, in a continuum from a very compressed pitch range to a very wide one, expressed by total deaccented material or H+L* L* contours, with upstep H tones.\",\"PeriodicalId\":37604,\"journal\":{\"name\":\"Dialogue and Discourse\",\"volume\":\"4 1\",\"pages\":\"79-106\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dialogue and Discourse\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5087/dad.2018.103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Arts and Humanities\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dialogue and Discourse","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5087/dad.2018.103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Arts and Humanities","Score":null,"Total":0}
Cross-domain analysis of discourse markers in European Portuguese
This paper presents an analysis of discourse markers in two spontaneous speech corpora for European Portuguese - university lectures and map-task dialogues - and also in a collection of tweets, aiming at contributing to their categorization, scarcely existent for European Portuguese. Our results show that the selection of discourse markers is domain and speaker dependent. We also found that the most frequent discourse markers are similar in all three corpora, despite tweets containing discourse markers not found in the other two corpora. In this multidisciplinary study, comprising both a linguistic perspective and a computational approach, discourse markers are also automatically discriminated from other structural metadata events, namely sentence-like units and disfluencies. Our results show that discourse markers and disfluencies tend to co-occur in the dialogue corpus, but have a complementary distribution in the university lectures. We used three acoustic-prosodic feature sets and machine learning to automatically distinguish between discourse markers, disfluencies and sentence-like units. Our in-domain experiments achieved an accuracy of about 87% in university lectures and 84% in dialogues, in line with our previous results. The eGeMAPS features, commonly used for other paralinguistic tasks, achieved a considerable performance on our data, especially considering the small size of the feature set. Our results suggest that turn-initial discourse markers are usually easier to classify than disfluencies, a result also previously reported in the literature. We conducted a cross-domain evaluation in order to evaluate the robustness of the models across domains. The results achieved are about 11%-12% lower, but we conclude that data from one domain can still be used to classify the same events in the other. Overall, despite the complexity of this task, these are very encouraging state-of-the-art results. Ultimately, using exclusively acoustic-prosodic cues, discourse markers can be fairly discriminated from disfluencies and SUs. In order to better understand the contribution of each feature, we have also reported the impact of the features in both the dialogues and the university lectures. Pitch features are the most relevant ones for the distinction between discourse markers and disfluencies, namely pitch slopes. These features are in line with the wide pitch range of discourse markers, in a continuum from a very compressed pitch range to a very wide one, expressed by total deaccented material or H+L* L* contours, with upstep H tones.
期刊介绍:
D&D seeks previously unpublished, high quality articles on the analysis of discourse and dialogue that contain -experimental and/or theoretical studies related to the construction, representation, and maintenance of (linguistic) context -linguistic analysis of phenomena characteristic of discourse and/or dialogue (including, but not limited to: reference and anaphora, presupposition and accommodation, topicality and salience, implicature, ---discourse structure and rhetorical relations, discourse markers and particles, the semantics and -pragmatics of dialogue acts, questions, imperatives, non-sentential utterances, intonation, and meta--communicative phenomena such as repair and grounding) -experimental and/or theoretical studies of agents'' information states and their dynamics in conversational interaction -new analytical frameworks that advance theoretical studies of discourse and dialogue -research on systems performing coreference resolution, discourse structure parsing, event and temporal -structure, and reference resolution in multimodal communication -experimental and/or theoretical results yielding new insight into non-linguistic interaction in -communication -work on natural language understanding (including spoken language understanding), dialogue management, -reasoning, and natural language generation (including text-to-speech) in dialogue systems -work related to the design and engineering of dialogue systems (including, but not limited to: -evaluation, usability design and testing, rapid application deployment, embodied agents, affect detection, -mixed-initiative, adaptation, and user modeling). -extremely well-written surveys of existing work. Highest priority is given to research reports that are specifically written for a multidisciplinary audience. The audience is primarily researchers on discourse and dialogue and its associated fields, including computer scientists, linguists, psychologists, philosophers, roboticists, sociologists.