疲劳载荷对飞机板膜孔眼耐久性影响的研究

D. Grinevich, I. V. Gulina, N. O. Yakovlev, D.-S. V. Dzandarov, A. A. Glagovskii, Y. V. Ermakova
{"title":"疲劳载荷对飞机板膜孔眼耐久性影响的研究","authors":"D. Grinevich, I. V. Gulina, N. O. Yakovlev, D.-S. V. Dzandarov, A. A. Glagovskii, Y. V. Ermakova","doi":"10.26896/1028-6861-2023-89-6-76-82","DOIUrl":null,"url":null,"abstract":"A high-strength aluminum alloy 1933 being distinguished by good physicomechanical properties and high manufacturability is widely used in the most critical power aircraft structures, e.g., in a modern AN-148 SSJ aircraft. The alloy is used in production of various parts of articulated joints, thus making study of the durability of the alloy in a complex stress state a relevant goal. We present the results of static and dynamic tests of structurally similar samples (of two types) manufactured according to serial technology and corresponding to the shape of real eyelets of the airframe slats. Preliminary fatigue tests of standard samples (a strip with a hole) were performed to obtain the refined characteristics of the alloy in the T3 state. To analyze the mechanical behavior of the alloy with a different amplitude-frequency character of loading, the asymmetry of the loading cycle (R = 0.1; 0.2; 0.5; 0.6; 0.76; 0.82) and exposure frequencies (10, 60, and 100 Hz) were varied. In is shown that an increase in the average stress of the loading cycle reduced the number of cycles before the destruction of the eyelets: a 2-fold increase in the average stress resulted in a drop in fatigue life by two orders of magnitude (for an amplitude of 5 kg/mm2).","PeriodicalId":13559,"journal":{"name":"Industrial laboratory. Diagnostics of materials","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study of the impact of fatigue loading on the durability of aircraft slat membrane eyelets\",\"authors\":\"D. Grinevich, I. V. Gulina, N. O. Yakovlev, D.-S. V. Dzandarov, A. A. Glagovskii, Y. V. Ermakova\",\"doi\":\"10.26896/1028-6861-2023-89-6-76-82\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A high-strength aluminum alloy 1933 being distinguished by good physicomechanical properties and high manufacturability is widely used in the most critical power aircraft structures, e.g., in a modern AN-148 SSJ aircraft. The alloy is used in production of various parts of articulated joints, thus making study of the durability of the alloy in a complex stress state a relevant goal. We present the results of static and dynamic tests of structurally similar samples (of two types) manufactured according to serial technology and corresponding to the shape of real eyelets of the airframe slats. Preliminary fatigue tests of standard samples (a strip with a hole) were performed to obtain the refined characteristics of the alloy in the T3 state. To analyze the mechanical behavior of the alloy with a different amplitude-frequency character of loading, the asymmetry of the loading cycle (R = 0.1; 0.2; 0.5; 0.6; 0.76; 0.82) and exposure frequencies (10, 60, and 100 Hz) were varied. In is shown that an increase in the average stress of the loading cycle reduced the number of cycles before the destruction of the eyelets: a 2-fold increase in the average stress resulted in a drop in fatigue life by two orders of magnitude (for an amplitude of 5 kg/mm2).\",\"PeriodicalId\":13559,\"journal\":{\"name\":\"Industrial laboratory. Diagnostics of materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Industrial laboratory. Diagnostics of materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26896/1028-6861-2023-89-6-76-82\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial laboratory. Diagnostics of materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26896/1028-6861-2023-89-6-76-82","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

1933高强度铝合金具有良好的物理机械性能和高可制造性,广泛应用于最关键的动力飞机结构,例如现代AN-148 SSJ飞机。该合金广泛应用于铰接接头各种零件的生产,从而使研究该合金在复杂应力状态下的耐久性成为一个相关的目标。本文介绍了按串联工艺制造的结构相似样品(两种类型)的静力和动力试验结果,这些样品与机身板条的实际孔眼形状相对应。为获得该合金在T3状态下的细化特性,对标准试样(带孔条)进行了初步疲劳试验。分析了不同加载幅频特性下合金的力学行为,加载周期的不对称性(R = 0.1;0.2;0.5;0.6;0.76;0.82)和暴露频率(10、60和100 Hz)不同。结果表明,加载周期平均应力的增加减少了孔眼破坏前的循环次数:平均应力增加2倍导致疲劳寿命下降两个数量级(幅度为5 kg/mm2)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Study of the impact of fatigue loading on the durability of aircraft slat membrane eyelets
A high-strength aluminum alloy 1933 being distinguished by good physicomechanical properties and high manufacturability is widely used in the most critical power aircraft structures, e.g., in a modern AN-148 SSJ aircraft. The alloy is used in production of various parts of articulated joints, thus making study of the durability of the alloy in a complex stress state a relevant goal. We present the results of static and dynamic tests of structurally similar samples (of two types) manufactured according to serial technology and corresponding to the shape of real eyelets of the airframe slats. Preliminary fatigue tests of standard samples (a strip with a hole) were performed to obtain the refined characteristics of the alloy in the T3 state. To analyze the mechanical behavior of the alloy with a different amplitude-frequency character of loading, the asymmetry of the loading cycle (R = 0.1; 0.2; 0.5; 0.6; 0.76; 0.82) and exposure frequencies (10, 60, and 100 Hz) were varied. In is shown that an increase in the average stress of the loading cycle reduced the number of cycles before the destruction of the eyelets: a 2-fold increase in the average stress resulted in a drop in fatigue life by two orders of magnitude (for an amplitude of 5 kg/mm2).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
0
期刊最新文献
Evaluation of the use of polyvinyl alcohol in the manufacture of pressed samples for X-ray fluorescence analysis Determination of the criterion for the morphological classification of etching pits formed in InSb single crystals grown by the Czochralski method in the crystallographic direction [111] and doped with tellurium The paradigm shift in mathematical methods of research Low cycle fracture resistance of the superalloy at single- and two-frequency modes of loading Fatigue fracture of 316L steel manufactured by selective laser melting method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1