Chong Dai, Z. Dai, Samiridhdi Paudyal, Saebom Ko, Yue Zhao, Xin Wang, Xuanzhu Yao, A. Kan, M. Tomson
{"title":"方解石缓蚀动力学浊度试验新方法及预测模型","authors":"Chong Dai, Z. Dai, Samiridhdi Paudyal, Saebom Ko, Yue Zhao, Xin Wang, Xuanzhu Yao, A. Kan, M. Tomson","doi":"10.2118/204398-ms","DOIUrl":null,"url":null,"abstract":"\n Calcite, as one of the most common scales in oilfield can be inhibited by common scale inhibitors. The measurement of calcite nucleation and inhibition is a challenge, because of the difficulty to control pH as a result of CO2 partitioning in and out of the aqueous phase. A new kinetic turbidity test method was developed so that the partial pressure of CO2, pH, and SI can be precisely controlled. Calcite nucleation and inhibition batch tests were conducted under various conditions (SI = 0.24-2.41, T = 4-175 °C, and pH = 5.5-7.5) in the presence of common phosphonate and polymeric inhibitors. Based on experimental results, calcite nucleation and inhibition semi-empirical models are proposed, and the logarithm of the predicted induction time is in good agreement with the measured induction time. The models are also validated with laboratory and field observations. Furthermore, a new BCC CSTR Inhibition (BCIn) test method that applied the Continuous Stirred Tank Reactor (CSTR) theory has been developed, for the first time. This BCIn method was used for calcite inhibitor screening tests and minimum inhibitor concentration (MIC) estimation. By only running one experiment (< 1 hour) for each inhibitor, BCIn method selected the effective inhibitors among 18 common inhibitors under the conditions of SI = 1.23 at 90 °C and pH = 6. It was also found that the critical concentration (Ccrit) from BCIn method has a correlation with the MIC from batch tests. This study provided a simple and reliable solution for conducting calcite scale inhibition tests in an efficient and low-cost way. Furthermore, the newly developed prediction models can be used as guidance for laboratory tests and field applications, potentially saving enormous amounts of time and money.","PeriodicalId":10910,"journal":{"name":"Day 2 Tue, December 07, 2021","volume":"104 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"New Kinetic Turbidity Test Method and Prediction Model for Calcite Inhibition\",\"authors\":\"Chong Dai, Z. Dai, Samiridhdi Paudyal, Saebom Ko, Yue Zhao, Xin Wang, Xuanzhu Yao, A. Kan, M. Tomson\",\"doi\":\"10.2118/204398-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Calcite, as one of the most common scales in oilfield can be inhibited by common scale inhibitors. The measurement of calcite nucleation and inhibition is a challenge, because of the difficulty to control pH as a result of CO2 partitioning in and out of the aqueous phase. A new kinetic turbidity test method was developed so that the partial pressure of CO2, pH, and SI can be precisely controlled. Calcite nucleation and inhibition batch tests were conducted under various conditions (SI = 0.24-2.41, T = 4-175 °C, and pH = 5.5-7.5) in the presence of common phosphonate and polymeric inhibitors. Based on experimental results, calcite nucleation and inhibition semi-empirical models are proposed, and the logarithm of the predicted induction time is in good agreement with the measured induction time. The models are also validated with laboratory and field observations. Furthermore, a new BCC CSTR Inhibition (BCIn) test method that applied the Continuous Stirred Tank Reactor (CSTR) theory has been developed, for the first time. This BCIn method was used for calcite inhibitor screening tests and minimum inhibitor concentration (MIC) estimation. By only running one experiment (< 1 hour) for each inhibitor, BCIn method selected the effective inhibitors among 18 common inhibitors under the conditions of SI = 1.23 at 90 °C and pH = 6. It was also found that the critical concentration (Ccrit) from BCIn method has a correlation with the MIC from batch tests. This study provided a simple and reliable solution for conducting calcite scale inhibition tests in an efficient and low-cost way. Furthermore, the newly developed prediction models can be used as guidance for laboratory tests and field applications, potentially saving enormous amounts of time and money.\",\"PeriodicalId\":10910,\"journal\":{\"name\":\"Day 2 Tue, December 07, 2021\",\"volume\":\"104 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 2 Tue, December 07, 2021\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/204398-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Tue, December 07, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/204398-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
New Kinetic Turbidity Test Method and Prediction Model for Calcite Inhibition
Calcite, as one of the most common scales in oilfield can be inhibited by common scale inhibitors. The measurement of calcite nucleation and inhibition is a challenge, because of the difficulty to control pH as a result of CO2 partitioning in and out of the aqueous phase. A new kinetic turbidity test method was developed so that the partial pressure of CO2, pH, and SI can be precisely controlled. Calcite nucleation and inhibition batch tests were conducted under various conditions (SI = 0.24-2.41, T = 4-175 °C, and pH = 5.5-7.5) in the presence of common phosphonate and polymeric inhibitors. Based on experimental results, calcite nucleation and inhibition semi-empirical models are proposed, and the logarithm of the predicted induction time is in good agreement with the measured induction time. The models are also validated with laboratory and field observations. Furthermore, a new BCC CSTR Inhibition (BCIn) test method that applied the Continuous Stirred Tank Reactor (CSTR) theory has been developed, for the first time. This BCIn method was used for calcite inhibitor screening tests and minimum inhibitor concentration (MIC) estimation. By only running one experiment (< 1 hour) for each inhibitor, BCIn method selected the effective inhibitors among 18 common inhibitors under the conditions of SI = 1.23 at 90 °C and pH = 6. It was also found that the critical concentration (Ccrit) from BCIn method has a correlation with the MIC from batch tests. This study provided a simple and reliable solution for conducting calcite scale inhibition tests in an efficient and low-cost way. Furthermore, the newly developed prediction models can be used as guidance for laboratory tests and field applications, potentially saving enormous amounts of time and money.