胺改性硅酸盐MCM-41吸附剂的制备及其去除H2S性能研究

IF 2.1 4区 化学 Q3 CHEMISTRY, PHYSICAL Progress in Reaction Kinetics and Mechanism Pub Date : 2020-05-01 DOI:10.1177/1468678319825900
J. Zhang, Hua Song, Yanguang Chen, Tianzhen Hao, Feng Li, Dan-dan Yuan, Xueqin Wang, Liang Zhao, Jinsen Gao
{"title":"胺改性硅酸盐MCM-41吸附剂的制备及其去除H2S性能研究","authors":"J. Zhang, Hua Song, Yanguang Chen, Tianzhen Hao, Feng Li, Dan-dan Yuan, Xueqin Wang, Liang Zhao, Jinsen Gao","doi":"10.1177/1468678319825900","DOIUrl":null,"url":null,"abstract":"A series of APTMS ((3-aminopropyl)trimethoxysilane)-modified silicate MCM-41 adsorbents (x-APTMS/MCM-41, x is the volume of APTMS per 1 g of silicate MCM-41) with different APTMS contents was prepared, and the effects of APTMS content on the desulfurization performance of the APTMS/MCM-41 adsorbents were studied in a fixed adsorption bed using H2S and N2 mixture as a model gas. The as-prepared adsorbents were characterized by X-ray diffraction analysis, N2 adsorption–desorption, Fourier transform infrared spectroscopy, transmission electron microscopy, scanning electron microscopy, and energy-dispersive spectroscopy. The results showed that all the APTMS-modified x-APTMS/MCM-41 adsorbents retained the mesoporous silica structure of MCM-41. The Brunauer–Emmett–Teller-specific surface area of x-APTMS/MCM-41 increased slightly with increasing x at first and then decreased with further increasing APTMS content. The H2S removal performances of x-APTMS/MCM-41 adsorbents decreased in the order 0.6-APTMS/MCM-41 > 0.7-APTMS/MCM-41 > 0.5-APTMS/MCM-41 > 0.4-APTMS/MCM-41 > 0.8-APTMS/MCM-41. At x = 0.6, the maximum H2S removal rate of 54.2% and H2S saturated capacity of 134.4 mg g−1 were observed. The regeneration experiment of 0.6-APTMS/MCM-41 adsorbent after three times regeneration at 423 K for 3 h in nitrogen confirmed that it possessed a good regenerability.","PeriodicalId":20859,"journal":{"name":"Progress in Reaction Kinetics and Mechanism","volume":"4 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Study on the preparation of amine-modified silicate MCM-41 adsorbent and its H2S removal performance\",\"authors\":\"J. Zhang, Hua Song, Yanguang Chen, Tianzhen Hao, Feng Li, Dan-dan Yuan, Xueqin Wang, Liang Zhao, Jinsen Gao\",\"doi\":\"10.1177/1468678319825900\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A series of APTMS ((3-aminopropyl)trimethoxysilane)-modified silicate MCM-41 adsorbents (x-APTMS/MCM-41, x is the volume of APTMS per 1 g of silicate MCM-41) with different APTMS contents was prepared, and the effects of APTMS content on the desulfurization performance of the APTMS/MCM-41 adsorbents were studied in a fixed adsorption bed using H2S and N2 mixture as a model gas. The as-prepared adsorbents were characterized by X-ray diffraction analysis, N2 adsorption–desorption, Fourier transform infrared spectroscopy, transmission electron microscopy, scanning electron microscopy, and energy-dispersive spectroscopy. The results showed that all the APTMS-modified x-APTMS/MCM-41 adsorbents retained the mesoporous silica structure of MCM-41. The Brunauer–Emmett–Teller-specific surface area of x-APTMS/MCM-41 increased slightly with increasing x at first and then decreased with further increasing APTMS content. The H2S removal performances of x-APTMS/MCM-41 adsorbents decreased in the order 0.6-APTMS/MCM-41 > 0.7-APTMS/MCM-41 > 0.5-APTMS/MCM-41 > 0.4-APTMS/MCM-41 > 0.8-APTMS/MCM-41. At x = 0.6, the maximum H2S removal rate of 54.2% and H2S saturated capacity of 134.4 mg g−1 were observed. The regeneration experiment of 0.6-APTMS/MCM-41 adsorbent after three times regeneration at 423 K for 3 h in nitrogen confirmed that it possessed a good regenerability.\",\"PeriodicalId\":20859,\"journal\":{\"name\":\"Progress in Reaction Kinetics and Mechanism\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Reaction Kinetics and Mechanism\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1177/1468678319825900\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Reaction Kinetics and Mechanism","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1177/1468678319825900","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 3

摘要

制备了一系列不同APTMS含量的APTMS((3-氨基丙基)三甲氧基硅烷)改性硅酸盐MCM-41吸附剂(x-APTMS/MCM-41, x为每g硅酸盐MCM-41中APTMS的体积),并在固定吸附床上以H2S和N2混合气为模型气,研究了APTMS含量对APTMS/MCM-41吸附剂脱硫性能的影响。采用x射线衍射分析、N2吸附-解吸、傅里叶红外光谱、透射电镜、扫描电镜和能量色散光谱对所制备的吸附剂进行了表征。结果表明,所有aptms修饰的x-APTMS/MCM-41吸附剂都保留了MCM-41的介孔二氧化硅结构。x-APTMS/MCM-41的brunauer - emmet - teller比表面积先随x的增加略有增加,后随APTMS含量的进一步增加而减小。x-APTMS/MCM-41吸附剂对H2S的去除效果依次为:0.6-APTMS/MCM-41 > 0.7-APTMS/MCM-41 > 0.5-APTMS/MCM-41 > 0.4-APTMS/MCM-41 > 0.8-APTMS/MCM-41。在x = 0.6时,H2S去除率最高可达54.2%,H2S饱和容量为134.4 mg g−1。对0.6-APTMS/MCM-41吸附剂在423 K条件下进行3次氮气再生实验,证实其具有良好的可再生性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Study on the preparation of amine-modified silicate MCM-41 adsorbent and its H2S removal performance
A series of APTMS ((3-aminopropyl)trimethoxysilane)-modified silicate MCM-41 adsorbents (x-APTMS/MCM-41, x is the volume of APTMS per 1 g of silicate MCM-41) with different APTMS contents was prepared, and the effects of APTMS content on the desulfurization performance of the APTMS/MCM-41 adsorbents were studied in a fixed adsorption bed using H2S and N2 mixture as a model gas. The as-prepared adsorbents were characterized by X-ray diffraction analysis, N2 adsorption–desorption, Fourier transform infrared spectroscopy, transmission electron microscopy, scanning electron microscopy, and energy-dispersive spectroscopy. The results showed that all the APTMS-modified x-APTMS/MCM-41 adsorbents retained the mesoporous silica structure of MCM-41. The Brunauer–Emmett–Teller-specific surface area of x-APTMS/MCM-41 increased slightly with increasing x at first and then decreased with further increasing APTMS content. The H2S removal performances of x-APTMS/MCM-41 adsorbents decreased in the order 0.6-APTMS/MCM-41 > 0.7-APTMS/MCM-41 > 0.5-APTMS/MCM-41 > 0.4-APTMS/MCM-41 > 0.8-APTMS/MCM-41. At x = 0.6, the maximum H2S removal rate of 54.2% and H2S saturated capacity of 134.4 mg g−1 were observed. The regeneration experiment of 0.6-APTMS/MCM-41 adsorbent after three times regeneration at 423 K for 3 h in nitrogen confirmed that it possessed a good regenerability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
0.00%
发文量
5
审稿时长
2.3 months
期刊介绍: The journal covers the fields of kinetics and mechanisms of chemical processes in the gas phase and solution of both simple and complex systems.
期刊最新文献
Understanding the rate-limiting step adsorption kinetics onto biomaterials for mechanism adsorption control Entropy controlled reaction of piperidine with isatin derivatives in 80% aqueous methanol Kinetics and mechanism of the oxidation of furfural by benzimidazolium dichromate under non aqueous medium Melting aspects in flow of second grade nanomaterial with homogeneous–heterogeneous reactions and irreversibility phenomenon: A residual error analysis Two coordination polymers: Crystal structures, prevention and nursing values on postoperative infection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1