{"title":"跨领域的用户满意度奖励估计:独立于领域的对话策略学习","authors":"Stefan Ultes, Wolfgang Maier","doi":"10.5210/dad.2021.203","DOIUrl":null,"url":null,"abstract":"Learning suitable and well-performing dialogue behaviour in statistical spoken dialogue systems has been in the focus of research for many years. While most work that is based on reinforcement learning employs an objective measure like task success for modelling the reward signal, we propose to use a reward signal based on user satisfaction. We propose a novel estimator and show that it outperforms all previous estimators while learning temporal dependencies implicitly. We show in simulated experiments that a live user satisfaction estimation model may be applied resulting in higher estimated satisfaction whilst achieving similar success rates. Moreover, we show that a satisfaction estimation model trained on one domain may be applied in many other domains that cover a similar task. We verify our findings by employing the model to one of the domains for learning a policy from real users and compare its performance to policies using user satisfaction and task success acquired directly from the users as reward.","PeriodicalId":37604,"journal":{"name":"Dialogue and Discourse","volume":"43 1","pages":"81-114"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"User Satisfaction Reward Estimation Across Domains: Domain-independent Dialogue Policy Learning\",\"authors\":\"Stefan Ultes, Wolfgang Maier\",\"doi\":\"10.5210/dad.2021.203\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Learning suitable and well-performing dialogue behaviour in statistical spoken dialogue systems has been in the focus of research for many years. While most work that is based on reinforcement learning employs an objective measure like task success for modelling the reward signal, we propose to use a reward signal based on user satisfaction. We propose a novel estimator and show that it outperforms all previous estimators while learning temporal dependencies implicitly. We show in simulated experiments that a live user satisfaction estimation model may be applied resulting in higher estimated satisfaction whilst achieving similar success rates. Moreover, we show that a satisfaction estimation model trained on one domain may be applied in many other domains that cover a similar task. We verify our findings by employing the model to one of the domains for learning a policy from real users and compare its performance to policies using user satisfaction and task success acquired directly from the users as reward.\",\"PeriodicalId\":37604,\"journal\":{\"name\":\"Dialogue and Discourse\",\"volume\":\"43 1\",\"pages\":\"81-114\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dialogue and Discourse\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5210/dad.2021.203\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Arts and Humanities\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dialogue and Discourse","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5210/dad.2021.203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Arts and Humanities","Score":null,"Total":0}
User Satisfaction Reward Estimation Across Domains: Domain-independent Dialogue Policy Learning
Learning suitable and well-performing dialogue behaviour in statistical spoken dialogue systems has been in the focus of research for many years. While most work that is based on reinforcement learning employs an objective measure like task success for modelling the reward signal, we propose to use a reward signal based on user satisfaction. We propose a novel estimator and show that it outperforms all previous estimators while learning temporal dependencies implicitly. We show in simulated experiments that a live user satisfaction estimation model may be applied resulting in higher estimated satisfaction whilst achieving similar success rates. Moreover, we show that a satisfaction estimation model trained on one domain may be applied in many other domains that cover a similar task. We verify our findings by employing the model to one of the domains for learning a policy from real users and compare its performance to policies using user satisfaction and task success acquired directly from the users as reward.
期刊介绍:
D&D seeks previously unpublished, high quality articles on the analysis of discourse and dialogue that contain -experimental and/or theoretical studies related to the construction, representation, and maintenance of (linguistic) context -linguistic analysis of phenomena characteristic of discourse and/or dialogue (including, but not limited to: reference and anaphora, presupposition and accommodation, topicality and salience, implicature, ---discourse structure and rhetorical relations, discourse markers and particles, the semantics and -pragmatics of dialogue acts, questions, imperatives, non-sentential utterances, intonation, and meta--communicative phenomena such as repair and grounding) -experimental and/or theoretical studies of agents'' information states and their dynamics in conversational interaction -new analytical frameworks that advance theoretical studies of discourse and dialogue -research on systems performing coreference resolution, discourse structure parsing, event and temporal -structure, and reference resolution in multimodal communication -experimental and/or theoretical results yielding new insight into non-linguistic interaction in -communication -work on natural language understanding (including spoken language understanding), dialogue management, -reasoning, and natural language generation (including text-to-speech) in dialogue systems -work related to the design and engineering of dialogue systems (including, but not limited to: -evaluation, usability design and testing, rapid application deployment, embodied agents, affect detection, -mixed-initiative, adaptation, and user modeling). -extremely well-written surveys of existing work. Highest priority is given to research reports that are specifically written for a multidisciplinary audience. The audience is primarily researchers on discourse and dialogue and its associated fields, including computer scientists, linguists, psychologists, philosophers, roboticists, sociologists.