一个实用的单颗粒断裂模型的回顾与进一步验证

IF 2.6 4区 材料科学 Q3 ENGINEERING, CHEMICAL KONA Powder and Particle Journal Pub Date : 2022-01-10 DOI:10.14356/KONA.2022012
L. M. Tavares
{"title":"一个实用的单颗粒断裂模型的回顾与进一步验证","authors":"L. M. Tavares","doi":"10.14356/KONA.2022012","DOIUrl":null,"url":null,"abstract":"Particle breakage occurs in comminution machines and, inadvertently, in other process equipment during handling as well as in geotechnical applications. For nearly a century, researchers have developed mathematical expressions to describe single-particle breakage having different levels of complexity and abilities to represent it. The work presents and analyses critically a breakage model that has been found to be suitable to describe breakage of brittle materials in association to the discrete element method, either embedded in it as part of particle replacement schemes or coupled to it in microscale population balance models. The energy-based model accounts for variability and size-dependency of fracture energy of particles, weakening when particles are stressed below this value, as well as energy and size-dependent fragment size distributions when particles are stressed beyond it, discriminating between surface and body breakage. The work then further validates the model on the basis of extensive data from impact load cell and drop weight tests. Finally, a discussion of challenges associated to fitting its parameters and on applications is presented.","PeriodicalId":17828,"journal":{"name":"KONA Powder and Particle Journal","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2022-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Review and Further Validation of a Practical Single-particle Breakage Model\",\"authors\":\"L. M. Tavares\",\"doi\":\"10.14356/KONA.2022012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Particle breakage occurs in comminution machines and, inadvertently, in other process equipment during handling as well as in geotechnical applications. For nearly a century, researchers have developed mathematical expressions to describe single-particle breakage having different levels of complexity and abilities to represent it. The work presents and analyses critically a breakage model that has been found to be suitable to describe breakage of brittle materials in association to the discrete element method, either embedded in it as part of particle replacement schemes or coupled to it in microscale population balance models. The energy-based model accounts for variability and size-dependency of fracture energy of particles, weakening when particles are stressed below this value, as well as energy and size-dependent fragment size distributions when particles are stressed beyond it, discriminating between surface and body breakage. The work then further validates the model on the basis of extensive data from impact load cell and drop weight tests. Finally, a discussion of challenges associated to fitting its parameters and on applications is presented.\",\"PeriodicalId\":17828,\"journal\":{\"name\":\"KONA Powder and Particle Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2022-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"KONA Powder and Particle Journal\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.14356/KONA.2022012\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"KONA Powder and Particle Journal","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.14356/KONA.2022012","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 11

摘要

颗粒破碎发生在粉碎机中,在处理过程中不经意地发生在其他工艺设备中,以及在岩土工程应用中。近一个世纪以来,研究人员已经开发出数学表达式来描述具有不同复杂程度和表示能力的单颗粒断裂。这项工作提出并批判性地分析了一个断裂模型,该模型已被发现适合于描述与离散元方法相关的脆性材料的断裂,无论是作为颗粒替换方案的一部分嵌入其中,还是与微尺度种群平衡模型相耦合。基于能量的模型考虑了颗粒断裂能的可变性和尺寸依赖性,当颗粒的应力低于该值时减弱,以及当颗粒的应力超过该值时,能量和尺寸依赖性碎片尺寸分布,区分了表面和身体的断裂。然后,在冲击称重传感器和落锤试验的大量数据的基础上,进一步验证了该模型。最后,讨论了拟合参数及其应用所面临的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Review and Further Validation of a Practical Single-particle Breakage Model
Particle breakage occurs in comminution machines and, inadvertently, in other process equipment during handling as well as in geotechnical applications. For nearly a century, researchers have developed mathematical expressions to describe single-particle breakage having different levels of complexity and abilities to represent it. The work presents and analyses critically a breakage model that has been found to be suitable to describe breakage of brittle materials in association to the discrete element method, either embedded in it as part of particle replacement schemes or coupled to it in microscale population balance models. The energy-based model accounts for variability and size-dependency of fracture energy of particles, weakening when particles are stressed below this value, as well as energy and size-dependent fragment size distributions when particles are stressed beyond it, discriminating between surface and body breakage. The work then further validates the model on the basis of extensive data from impact load cell and drop weight tests. Finally, a discussion of challenges associated to fitting its parameters and on applications is presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
KONA Powder and Particle Journal
KONA Powder and Particle Journal 工程技术-材料科学:综合
CiteScore
8.40
自引率
4.90%
发文量
35
审稿时长
>12 weeks
期刊介绍: KONA publishes papers in the broad field of powder science and technology, ranging from fundamental principles to practical applications. Papers describing technological experience and critical reviews of existing knowledge in special areas are also welcome.
期刊最新文献
The 55th Symposium on Powder Technology Reviewer Appreciation The KONA Award 2022 4th International Hosokawa Powder Technology Symposium Held in Germany Editor’s Preface
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1