菱镁矿废石的湿式强磁选

A. Atasoy
{"title":"菱镁矿废石的湿式强磁选","authors":"A. Atasoy","doi":"10.2298/hemind181010026a","DOIUrl":null,"url":null,"abstract":"The wet high intensity magnetic separation of magnesite ore waste stocked in an open pit of a magnesite mine was investigated in this paper. The received sample was subjected to physical, chemical, thermal and phase characterizations. The magnesite ore waste sample contained 77.69 % MgCO3 and a considerable amount of Fe2O3 (3.14 %). The unwanted silica and iron impurities were removed and a high-grade magnesite was experimentally obtained. Results have shown that a high-grade magnesite was obtained after subjecting the non-magnetic portion of the processed sample twice at 1.8 T. It was possible to increase the magnesite content up to 91.03 % while reducing the iron content to 0.32 % by using magnetic separation. After the calcination process at 1000?C, the sample showed mass loss on ignition of 52 % and contained 85.39 % MgO with 0.32 % Fe2O3. The final product can be used in chemical and metallurgical applications where high magnesia contents are required. The experimental results provide useful information on wet magnetic separation of magnesite wastes.","PeriodicalId":9933,"journal":{"name":"Chemical Industry","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The wet high intensity magnetic separation of magnesite ore waste\",\"authors\":\"A. Atasoy\",\"doi\":\"10.2298/hemind181010026a\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The wet high intensity magnetic separation of magnesite ore waste stocked in an open pit of a magnesite mine was investigated in this paper. The received sample was subjected to physical, chemical, thermal and phase characterizations. The magnesite ore waste sample contained 77.69 % MgCO3 and a considerable amount of Fe2O3 (3.14 %). The unwanted silica and iron impurities were removed and a high-grade magnesite was experimentally obtained. Results have shown that a high-grade magnesite was obtained after subjecting the non-magnetic portion of the processed sample twice at 1.8 T. It was possible to increase the magnesite content up to 91.03 % while reducing the iron content to 0.32 % by using magnetic separation. After the calcination process at 1000?C, the sample showed mass loss on ignition of 52 % and contained 85.39 % MgO with 0.32 % Fe2O3. The final product can be used in chemical and metallurgical applications where high magnesia contents are required. The experimental results provide useful information on wet magnetic separation of magnesite wastes.\",\"PeriodicalId\":9933,\"journal\":{\"name\":\"Chemical Industry\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Industry\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.2298/hemind181010026a\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Industry","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.2298/hemind181010026a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

对某菱镁矿露天矿尾矿的湿式强磁选工艺进行了研究。接收到的样品进行了物理、化学、热和相表征。菱镁矿废样中MgCO3含量为77.69%,Fe2O3含量为3.14%。去除多余的硅和铁杂质,得到了一种高品位的菱镁矿。结果表明,在1.8 t下对加工样品的非磁性部分进行两次处理,可获得高品位菱镁矿,磁选可使菱镁矿含量提高到91.03%,铁含量降低到0.32%。煅烧过程在1000?C,样品着火后质量损失为52%,MgO含量为85.39%,Fe2O3含量为0.32%。最终产品可用于需要高镁含量的化学和冶金应用。实验结果为湿法磁选菱镁矿废物提供了有益的资料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The wet high intensity magnetic separation of magnesite ore waste
The wet high intensity magnetic separation of magnesite ore waste stocked in an open pit of a magnesite mine was investigated in this paper. The received sample was subjected to physical, chemical, thermal and phase characterizations. The magnesite ore waste sample contained 77.69 % MgCO3 and a considerable amount of Fe2O3 (3.14 %). The unwanted silica and iron impurities were removed and a high-grade magnesite was experimentally obtained. Results have shown that a high-grade magnesite was obtained after subjecting the non-magnetic portion of the processed sample twice at 1.8 T. It was possible to increase the magnesite content up to 91.03 % while reducing the iron content to 0.32 % by using magnetic separation. After the calcination process at 1000?C, the sample showed mass loss on ignition of 52 % and contained 85.39 % MgO with 0.32 % Fe2O3. The final product can be used in chemical and metallurgical applications where high magnesia contents are required. The experimental results provide useful information on wet magnetic separation of magnesite wastes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Antimicrobial activity of different wound dressing products treated with silver Adsorptive pretreatment of waste cooking oil using quicklime for fatty acid methyl esters synthesis Experimental and modeling studies of mass transfer and hydrodynamics in a packed bed absorption column for CO2 - water system Advances in biodiesel production research Improving the stability of a probiotic product with Lactiplantibacillus plantarum 299v by introducing flow pack bags
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1