板卷复合材料压延成形(压制)的流体动力学建模

IF 0.1 Q4 CONSTRUCTION & BUILDING TECHNOLOGY Russian Journal of Building Construction and Architecture Pub Date : 2023-07-12 DOI:10.36622/vstu.2023.3.59.003
B. M. Kumitsky, E. Aralov, N. Savrasova, O. Dornyak
{"title":"板卷复合材料压延成形(压制)的流体动力学建模","authors":"B. M. Kumitsky, E. Aralov, N. Savrasova, O. Dornyak","doi":"10.36622/vstu.2023.3.59.003","DOIUrl":null,"url":null,"abstract":"Statement of the problem. The problem of production of sheet and roll composites necessary for the construction industry in the conditions of roll-calender processing and pressing of polymer materials and reinforcing tape is investigated. The solution of this problem is carried out within the framework of a hydrodynamic model of a stationary, isothermal flow of a viscous, incompressible medium in a flat symmetrical layer between two ideal cylinders (calenders) rotating in opposite directions with equal speeds. The purpose of such a statement is to analyze the stress-strain obtained under calendering conditions, as well as to obtain at the design stage of the molding process the results of calculating a complex of energy-power parameters that allow controlling the calendering process. Results and conclusions. Using the approximate Reynolds equations in the part of the deformable medium in direct contact with the cylinders, assuming that its rheological properties correspond to a Newtonian fluid, analytical expressions are obtained for the force and kinematic parameters of pressing, depending on the thickness of the formed layer and the speed of rotation of the rollers. Based on the equilibrium condition, an expression is obtained for the magnitude of the thrust force that ensures the molding process. It is shown that the value of the rolling friction coefficient decreases with a decrease in the thickness of the layer, the specific spacer force, as well as the angular velocity of rotation.","PeriodicalId":40951,"journal":{"name":"Russian Journal of Building Construction and Architecture","volume":"77 6 1","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2023-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hydrodynamic Modeling of Calender Forming (Pressing) of Sheet and Roll Composites\",\"authors\":\"B. M. Kumitsky, E. Aralov, N. Savrasova, O. Dornyak\",\"doi\":\"10.36622/vstu.2023.3.59.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Statement of the problem. The problem of production of sheet and roll composites necessary for the construction industry in the conditions of roll-calender processing and pressing of polymer materials and reinforcing tape is investigated. The solution of this problem is carried out within the framework of a hydrodynamic model of a stationary, isothermal flow of a viscous, incompressible medium in a flat symmetrical layer between two ideal cylinders (calenders) rotating in opposite directions with equal speeds. The purpose of such a statement is to analyze the stress-strain obtained under calendering conditions, as well as to obtain at the design stage of the molding process the results of calculating a complex of energy-power parameters that allow controlling the calendering process. Results and conclusions. Using the approximate Reynolds equations in the part of the deformable medium in direct contact with the cylinders, assuming that its rheological properties correspond to a Newtonian fluid, analytical expressions are obtained for the force and kinematic parameters of pressing, depending on the thickness of the formed layer and the speed of rotation of the rollers. Based on the equilibrium condition, an expression is obtained for the magnitude of the thrust force that ensures the molding process. It is shown that the value of the rolling friction coefficient decreases with a decrease in the thickness of the layer, the specific spacer force, as well as the angular velocity of rotation.\",\"PeriodicalId\":40951,\"journal\":{\"name\":\"Russian Journal of Building Construction and Architecture\",\"volume\":\"77 6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2023-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Journal of Building Construction and Architecture\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36622/vstu.2023.3.59.003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Building Construction and Architecture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36622/vstu.2023.3.59.003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

问题的陈述。研究了在滚压延机加工和压制高分子材料和增强带的条件下,建筑工业所需的片状和卷状复合材料的生产问题。这个问题的解决是在一个流体力学模型的框架内进行的,这个模型是在两个理想的圆柱体(压延机)之间以相反的方向以相同的速度旋转的平坦对称层中,粘性不可压缩介质的静止等温流动。这种表述的目的是分析在压延条件下得到的应力-应变,并在成型工艺的设计阶段得到计算能量-功率复合参数的结果,从而控制压延过程。结果和结论。利用与圆筒直接接触的可变形介质部分的近似雷诺方程,假设其流变特性与牛顿流体相对应,得到了压成形层厚度和滚子旋转速度对压成形力和运动参数的解析表达式。基于平衡条件,得到了保证成型过程的推力大小表达式。结果表明,滚动摩擦系数随层厚、比间隔力和旋转角速度的减小而减小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hydrodynamic Modeling of Calender Forming (Pressing) of Sheet and Roll Composites
Statement of the problem. The problem of production of sheet and roll composites necessary for the construction industry in the conditions of roll-calender processing and pressing of polymer materials and reinforcing tape is investigated. The solution of this problem is carried out within the framework of a hydrodynamic model of a stationary, isothermal flow of a viscous, incompressible medium in a flat symmetrical layer between two ideal cylinders (calenders) rotating in opposite directions with equal speeds. The purpose of such a statement is to analyze the stress-strain obtained under calendering conditions, as well as to obtain at the design stage of the molding process the results of calculating a complex of energy-power parameters that allow controlling the calendering process. Results and conclusions. Using the approximate Reynolds equations in the part of the deformable medium in direct contact with the cylinders, assuming that its rheological properties correspond to a Newtonian fluid, analytical expressions are obtained for the force and kinematic parameters of pressing, depending on the thickness of the formed layer and the speed of rotation of the rollers. Based on the equilibrium condition, an expression is obtained for the magnitude of the thrust force that ensures the molding process. It is shown that the value of the rolling friction coefficient decreases with a decrease in the thickness of the layer, the specific spacer force, as well as the angular velocity of rotation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Russian Journal of Building Construction and Architecture
Russian Journal of Building Construction and Architecture CONSTRUCTION & BUILDING TECHNOLOGY-
自引率
50.00%
发文量
28
期刊最新文献
Shear Resistance of Gravel Materials for Structural Layers of Road Clothes Effective Protective Coating of Pipe Metal with High-Strength Corrosion-Resistant Material Based on Low-Molecular Oligodiene Analysis of Modern Software for Virtual Construction (4D Modeling) Physico-chemical Methods for Investigating the Effect of the «Mador» Modifier on the Characteristics of Cement Reinforced Material Architectural Concept Modern Oceanographic Complex
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1