小型分株调查揭示了雪区柳杉无性系繁殖的近代性

IF 1.1 4区 农林科学 Q3 FORESTRY Silvae Genetica Pub Date : 2020-01-01 DOI:10.2478/sg-2020-0020
M. Kimura, T. Nagashima, T. Kamitani, H. Sakio, Y. Tsumura
{"title":"小型分株调查揭示了雪区柳杉无性系繁殖的近代性","authors":"M. Kimura, T. Nagashima, T. Kamitani, H. Sakio, Y. Tsumura","doi":"10.2478/sg-2020-0020","DOIUrl":null,"url":null,"abstract":"Abstract Clonal reproduction may contribute to population maintenance in areas where disturbance caused by snow limits tree recruitment. To understand the importance of clonal reproduction in the population dynamics of canopy tree species, it is necessary to determine the frequency of clonal reproduction in the early stages of seedling establishment. We found 106 ramets, including “small-sized” ramets of less than 5 cm in diameter at breast height, aggregated within 4 patches in a 70 × 50 m plot and also identified 20 genets among these ramets with the use of nuclear microsatellite markers. The size structure of the ramets revealed an inverse J-shaped distribution, suggesting that continuous recruitment of new ramets occurs. However, the number of intermediate-sized ramets (around 10 cm DBH) at the present study site was small, suggesting that most new ramets die while they are still small by pressure from heavy snow. Of the 20 genets, 12 included one or more small-sized ramets, which indicated recent recruitment. Of the 12 genets, 3 included only a single small-sized ramet, which suggested seedling recruitment, whereas the other 9 included multiple ramets (39 small-sized ramets in total), which indicated clonal recruitment. The frequency (9/12) and number (39/9) of recent clonal recruits suggest that clonal reproduction effectively maintains the population of Cryptomeria japonica in snowy regions.","PeriodicalId":21834,"journal":{"name":"Silvae Genetica","volume":"2 1","pages":"152 - 157"},"PeriodicalIF":1.1000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Recent clonal reproduction of Cryptomeria japonica in a snowy region revealed by a survey of small-sized ramets\",\"authors\":\"M. Kimura, T. Nagashima, T. Kamitani, H. Sakio, Y. Tsumura\",\"doi\":\"10.2478/sg-2020-0020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Clonal reproduction may contribute to population maintenance in areas where disturbance caused by snow limits tree recruitment. To understand the importance of clonal reproduction in the population dynamics of canopy tree species, it is necessary to determine the frequency of clonal reproduction in the early stages of seedling establishment. We found 106 ramets, including “small-sized” ramets of less than 5 cm in diameter at breast height, aggregated within 4 patches in a 70 × 50 m plot and also identified 20 genets among these ramets with the use of nuclear microsatellite markers. The size structure of the ramets revealed an inverse J-shaped distribution, suggesting that continuous recruitment of new ramets occurs. However, the number of intermediate-sized ramets (around 10 cm DBH) at the present study site was small, suggesting that most new ramets die while they are still small by pressure from heavy snow. Of the 20 genets, 12 included one or more small-sized ramets, which indicated recent recruitment. Of the 12 genets, 3 included only a single small-sized ramet, which suggested seedling recruitment, whereas the other 9 included multiple ramets (39 small-sized ramets in total), which indicated clonal recruitment. The frequency (9/12) and number (39/9) of recent clonal recruits suggest that clonal reproduction effectively maintains the population of Cryptomeria japonica in snowy regions.\",\"PeriodicalId\":21834,\"journal\":{\"name\":\"Silvae Genetica\",\"volume\":\"2 1\",\"pages\":\"152 - 157\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Silvae Genetica\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.2478/sg-2020-0020\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"FORESTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Silvae Genetica","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.2478/sg-2020-0020","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 2

摘要

摘要在积雪干扰限制树木补充的地区,无性系繁殖可能有助于种群维持。为了了解无性系繁殖在冠层树种种群动态中的重要性,有必要确定树苗建立初期无性系繁殖的频率。在70 × 50 m的样地中,我们发现106个品种(包括胸高直径小于5 cm的“小型”品种)聚集在4个斑块内,并利用核微卫星标记在这些品种中鉴定了20个基因。分节的大小结构呈反j型分布,表明新分节不断增加。然而,在目前的研究地点,中型品种(约10厘米胸径)的数量很少,这表明大多数新品种在它们还很小的时候就因大雪的压力而死亡。在这20个基因中,有12个包含一个或多个小型株,这表明最近被招募。在12个基因中,有3个基因只包含一个小分株,表明存在苗期招募;另外9个基因包含多个分株(共39个小分株),表明存在无性系招募。近期无性繁殖的频率(9/12)和数量(39/9)表明无性繁殖有效地维持了雪区柳杉的种群数量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Recent clonal reproduction of Cryptomeria japonica in a snowy region revealed by a survey of small-sized ramets
Abstract Clonal reproduction may contribute to population maintenance in areas where disturbance caused by snow limits tree recruitment. To understand the importance of clonal reproduction in the population dynamics of canopy tree species, it is necessary to determine the frequency of clonal reproduction in the early stages of seedling establishment. We found 106 ramets, including “small-sized” ramets of less than 5 cm in diameter at breast height, aggregated within 4 patches in a 70 × 50 m plot and also identified 20 genets among these ramets with the use of nuclear microsatellite markers. The size structure of the ramets revealed an inverse J-shaped distribution, suggesting that continuous recruitment of new ramets occurs. However, the number of intermediate-sized ramets (around 10 cm DBH) at the present study site was small, suggesting that most new ramets die while they are still small by pressure from heavy snow. Of the 20 genets, 12 included one or more small-sized ramets, which indicated recent recruitment. Of the 12 genets, 3 included only a single small-sized ramet, which suggested seedling recruitment, whereas the other 9 included multiple ramets (39 small-sized ramets in total), which indicated clonal recruitment. The frequency (9/12) and number (39/9) of recent clonal recruits suggest that clonal reproduction effectively maintains the population of Cryptomeria japonica in snowy regions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Silvae Genetica
Silvae Genetica 农林科学-林学
CiteScore
2.20
自引率
10.00%
发文量
10
审稿时长
3 months
期刊介绍: Silvae Genetica is an international peer reviewed journal with more than 65 year tradition and experience in all fields of theoretical and applied Forest Genetics and Tree breeding. It continues "Zeitschrift für Forstgenetik und Forstpflanzenzüchtung" (Journal of Forest Genetics and Forest Tree Breeding) founded by W. LANGNER in 1951.
期刊最新文献
Identification of superior hybrid clones for fibre biometry in Eucalyptus camaldulensis × E. tereticornis using multi trait stability index A Novel Set of Chloroplast SSR Markers for the Genus Juglans Reveals Within Species Differentiation An improved and effective DNA extraction protocol for Pyracantha crenulata with optimal PCR reliability Accuracy Evaluation of Visible-Near Infrared Spectroscopy for Detecting Insect Damage in Acorns of Quercus acuta High-molecular-weight DNA extraction for broadleaved and conifer tree species
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1