利用驻表面声波使能技术对水凝胶中的纳米材料进行定向

Jiali Li, Luyu Bo, Teng Li, Zhenhua Tian
{"title":"利用驻表面声波使能技术对水凝胶中的纳米材料进行定向","authors":"Jiali Li, Luyu Bo, Teng Li, Zhenhua Tian","doi":"10.1115/imece2022-97095","DOIUrl":null,"url":null,"abstract":"\n Particle manipulation and patterning have gained tremendous attention in chemical, biomedical, and manufacturing studies. Hydrogels are usually used for applications in soft robots, biosensing, as well as tissue engineering. In this study, we investigated a nanoparticle manipulation method based on standing surface acoustic waves (SAWs). The SAW device consists of a piezoelectric lithium niobate (LiNbO3) substrate with a pair of interdigital transducers (IDTs). Finite element simulations were performed to understand the mechanisms of the SAW device as well as reveal the acoustic pressure field and electric potential field generated by the device. In addition to numerical studies, proof-of-concept experiments were performed by using a fabricated SAW device for patterning both silicon dioxide (SiO2) nanoparticles and multi-walled carbon nanotubes (MWCNTs) in a hydrogel solution.","PeriodicalId":23648,"journal":{"name":"Volume 1: Acoustics, Vibration, and Phononics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Alignment of Nanomaterials in Hydrogels by Using Standing Surface Acoustic Wave-Enable\",\"authors\":\"Jiali Li, Luyu Bo, Teng Li, Zhenhua Tian\",\"doi\":\"10.1115/imece2022-97095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Particle manipulation and patterning have gained tremendous attention in chemical, biomedical, and manufacturing studies. Hydrogels are usually used for applications in soft robots, biosensing, as well as tissue engineering. In this study, we investigated a nanoparticle manipulation method based on standing surface acoustic waves (SAWs). The SAW device consists of a piezoelectric lithium niobate (LiNbO3) substrate with a pair of interdigital transducers (IDTs). Finite element simulations were performed to understand the mechanisms of the SAW device as well as reveal the acoustic pressure field and electric potential field generated by the device. In addition to numerical studies, proof-of-concept experiments were performed by using a fabricated SAW device for patterning both silicon dioxide (SiO2) nanoparticles and multi-walled carbon nanotubes (MWCNTs) in a hydrogel solution.\",\"PeriodicalId\":23648,\"journal\":{\"name\":\"Volume 1: Acoustics, Vibration, and Phononics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 1: Acoustics, Vibration, and Phononics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/imece2022-97095\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 1: Acoustics, Vibration, and Phononics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2022-97095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

粒子操纵和图形化在化学、生物医学和制造研究中获得了极大的关注。水凝胶通常用于软体机器人、生物传感以及组织工程。在这项研究中,我们研究了一种基于驻表面声波(saw)的纳米粒子操纵方法。SAW器件由铌酸锂(LiNbO3)压电衬底和一对数字间换能器(idt)组成。通过有限元仿真,了解了声表面波器件的工作机理,揭示了声表面波器件产生的声压场和电势场。除了数值研究之外,我们还利用自制的SAW装置在水凝胶溶液中对二氧化硅(SiO2)纳米颗粒和多壁碳纳米管(MWCNTs)进行了概念验证实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Alignment of Nanomaterials in Hydrogels by Using Standing Surface Acoustic Wave-Enable
Particle manipulation and patterning have gained tremendous attention in chemical, biomedical, and manufacturing studies. Hydrogels are usually used for applications in soft robots, biosensing, as well as tissue engineering. In this study, we investigated a nanoparticle manipulation method based on standing surface acoustic waves (SAWs). The SAW device consists of a piezoelectric lithium niobate (LiNbO3) substrate with a pair of interdigital transducers (IDTs). Finite element simulations were performed to understand the mechanisms of the SAW device as well as reveal the acoustic pressure field and electric potential field generated by the device. In addition to numerical studies, proof-of-concept experiments were performed by using a fabricated SAW device for patterning both silicon dioxide (SiO2) nanoparticles and multi-walled carbon nanotubes (MWCNTs) in a hydrogel solution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Machine Learning Framework for Physics-Based Multi-Fidelity Modeling and Health Monitoring for a Composite Wing Design and Numerical Analysis of Locally-Resonant Meta-Lattice Structure for Vibration Attenuation Research on Testing Method and Device of Sensitivity Consistency of Acoustic Emission Sensors Unsupervised Online Anomaly Detection of Metal Additive Manufacturing Processes via a Statistical Time-Frequency Domain Approach Nonlinear Electro-Mechanical Impedance Spectroscopy for Comprehensive Monitoring of Carbon Fiber Reinforced Composite Laminates
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1