{"title":"超分辨率散射中心提取的DROP算法","authors":"Young-Jae Choi, I. Choi","doi":"10.2528/PIER18082304","DOIUrl":null,"url":null,"abstract":"The scattering center extraction algorithm is a method to estimate the scattering center from the backscattered field. Superior scattering center extraction algorithms should be robust to noise, independent of the model order, and automatically and quickly operated. In this paper, we propose a novel super resolution scattering center extraction algorithm that satisfies the conditions mentioned above, which has been named the dimension reduced optimization problem (DROP). Using DROP, we determined a one-dimensional scattering center from a high resolution range profile and a two-dimensional scattering center from an inverse synthetic aperture radar image.","PeriodicalId":54551,"journal":{"name":"Progress in Electromagnetics Research-Pier","volume":"17 1","pages":"119-132"},"PeriodicalIF":6.7000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"DROP Algorithm for Super Resolution Scattering Center Extraction\",\"authors\":\"Young-Jae Choi, I. Choi\",\"doi\":\"10.2528/PIER18082304\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The scattering center extraction algorithm is a method to estimate the scattering center from the backscattered field. Superior scattering center extraction algorithms should be robust to noise, independent of the model order, and automatically and quickly operated. In this paper, we propose a novel super resolution scattering center extraction algorithm that satisfies the conditions mentioned above, which has been named the dimension reduced optimization problem (DROP). Using DROP, we determined a one-dimensional scattering center from a high resolution range profile and a two-dimensional scattering center from an inverse synthetic aperture radar image.\",\"PeriodicalId\":54551,\"journal\":{\"name\":\"Progress in Electromagnetics Research-Pier\",\"volume\":\"17 1\",\"pages\":\"119-132\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Electromagnetics Research-Pier\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.2528/PIER18082304\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Electromagnetics Research-Pier","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.2528/PIER18082304","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
DROP Algorithm for Super Resolution Scattering Center Extraction
The scattering center extraction algorithm is a method to estimate the scattering center from the backscattered field. Superior scattering center extraction algorithms should be robust to noise, independent of the model order, and automatically and quickly operated. In this paper, we propose a novel super resolution scattering center extraction algorithm that satisfies the conditions mentioned above, which has been named the dimension reduced optimization problem (DROP). Using DROP, we determined a one-dimensional scattering center from a high resolution range profile and a two-dimensional scattering center from an inverse synthetic aperture radar image.
期刊介绍:
Progress In Electromagnetics Research (PIER) publishes peer-reviewed original and comprehensive articles on all aspects of electromagnetic theory and applications. This is an open access, on-line journal PIER (E-ISSN 1559-8985). It has been first published as a monograph series on Electromagnetic Waves (ISSN 1070-4698) in 1989. It is freely available to all readers via the Internet.