{"title":"使用PLS-PM和其他基于方差的结构方程模型估计器进行蒙特卡罗模拟:使用R包cSEM的教程","authors":"Tamara Schamberger","doi":"10.1108/imds-07-2022-0418","DOIUrl":null,"url":null,"abstract":"PurposeStructural equation modeling (SEM) is a well-established and frequently applied method in various disciplines. New methods in the context of SEM are being introduced in an ongoing manner. Since formal proof of statistical properties is difficult or impossible, new methods are frequently justified using Monte Carlo simulations. For SEM with covariance-based estimators, several tools are available to perform Monte Carlo simulations. Moreover, several guidelines on how to conduct a Monte Carlo simulation for SEM with these tools have been introduced. In contrast, software to estimate structural equation models with variance-based estimators such as partial least squares path modeling (PLS-PM) is limited.Design/methodology/approachAs a remedy, the R package cSEM which allows researchers to estimate structural equation models and to perform Monte Carlo simulations for SEM with variance-based estimators has been introduced. This manuscript provides guidelines on how to conduct a Monte Carlo simulation for SEM with variance-based estimators using the R packages cSEM and cSEM.DGP.FindingsThe author introduces and recommends a six-step procedure to be followed in conducting each Monte Carlo simulation.Originality/valueFor each of the steps, common design patterns are given. Moreover, these guidelines are illustrated by an example Monte Carlo simulation with ready-to-use R code showing that PLS-PM needs the constructs to be embedded in a nomological net to yield valuable results.","PeriodicalId":13427,"journal":{"name":"Ind. Manag. Data Syst.","volume":"28 1","pages":"1789-1813"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Conducting Monte Carlo simulations with PLS-PM and other variance-based estimators for structural equation models: a tutorial using the R package cSEM\",\"authors\":\"Tamara Schamberger\",\"doi\":\"10.1108/imds-07-2022-0418\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"PurposeStructural equation modeling (SEM) is a well-established and frequently applied method in various disciplines. New methods in the context of SEM are being introduced in an ongoing manner. Since formal proof of statistical properties is difficult or impossible, new methods are frequently justified using Monte Carlo simulations. For SEM with covariance-based estimators, several tools are available to perform Monte Carlo simulations. Moreover, several guidelines on how to conduct a Monte Carlo simulation for SEM with these tools have been introduced. In contrast, software to estimate structural equation models with variance-based estimators such as partial least squares path modeling (PLS-PM) is limited.Design/methodology/approachAs a remedy, the R package cSEM which allows researchers to estimate structural equation models and to perform Monte Carlo simulations for SEM with variance-based estimators has been introduced. This manuscript provides guidelines on how to conduct a Monte Carlo simulation for SEM with variance-based estimators using the R packages cSEM and cSEM.DGP.FindingsThe author introduces and recommends a six-step procedure to be followed in conducting each Monte Carlo simulation.Originality/valueFor each of the steps, common design patterns are given. Moreover, these guidelines are illustrated by an example Monte Carlo simulation with ready-to-use R code showing that PLS-PM needs the constructs to be embedded in a nomological net to yield valuable results.\",\"PeriodicalId\":13427,\"journal\":{\"name\":\"Ind. Manag. Data Syst.\",\"volume\":\"28 1\",\"pages\":\"1789-1813\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ind. Manag. Data Syst.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1108/imds-07-2022-0418\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ind. Manag. Data Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/imds-07-2022-0418","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Conducting Monte Carlo simulations with PLS-PM and other variance-based estimators for structural equation models: a tutorial using the R package cSEM
PurposeStructural equation modeling (SEM) is a well-established and frequently applied method in various disciplines. New methods in the context of SEM are being introduced in an ongoing manner. Since formal proof of statistical properties is difficult or impossible, new methods are frequently justified using Monte Carlo simulations. For SEM with covariance-based estimators, several tools are available to perform Monte Carlo simulations. Moreover, several guidelines on how to conduct a Monte Carlo simulation for SEM with these tools have been introduced. In contrast, software to estimate structural equation models with variance-based estimators such as partial least squares path modeling (PLS-PM) is limited.Design/methodology/approachAs a remedy, the R package cSEM which allows researchers to estimate structural equation models and to perform Monte Carlo simulations for SEM with variance-based estimators has been introduced. This manuscript provides guidelines on how to conduct a Monte Carlo simulation for SEM with variance-based estimators using the R packages cSEM and cSEM.DGP.FindingsThe author introduces and recommends a six-step procedure to be followed in conducting each Monte Carlo simulation.Originality/valueFor each of the steps, common design patterns are given. Moreover, these guidelines are illustrated by an example Monte Carlo simulation with ready-to-use R code showing that PLS-PM needs the constructs to be embedded in a nomological net to yield valuable results.