可解释的复杂问题回答

Soumen Chakrabarti
{"title":"可解释的复杂问题回答","authors":"Soumen Chakrabarti","doi":"10.1145/3366423.3380764","DOIUrl":null,"url":null,"abstract":"We will review cross-community co-evolution of question answering (QA) with the advent of large-scale knowledge graphs (KGs), continuous representations of text and graphs, and deep sequence analysis. Early QA systems were information retrieval (IR) systems enhanced to extract named entity spans from high-scoring passages. Starting with WordNet, a series of structured curations of language and world knowledge, called KGs, enabled further improvements. Corpus is unstructured and messy to exploit for QA. If a question can be answered using the KG alone, it is attractive to ‘interpret’ the free-form question into a structured query, which is then executed on the structured KG. This process is called KGQA. Answers can be high-quality and explainable if the KG has an answer, but manual curation results in low coverage. KGs were soon found useful to harness corpus information. Named entity mention spans could be tagged with fine-grained types (e.g., scientist), or even specific entities (e.g., Einstein). The QA system can learn to decompose a query into functional parts, e.g., “which scientist” and “played the violin”. With increasing success of such systems, ambition grew to address multi-hop or multi-clause queries, e.g., “the father of the director of La La Land teaches at which university?” or “who directed an award-winning movie and is the son of a Princeton University professor?” Questions limited to simple path traversals in KGs have been encoded to a vector representation, which a decoder then uses to guide the KG traversal. Recently the corpus counterpart of such strategies has also been proposed. However, for general multi-clause queries that do not necessarily translate to paths, and seek to bind multiple variables to satisfy multiple clauses, or involve logic, comparison, aggregation and other arithmetic, neural programmer-interpreter systems have seen some success. Our key focus will be on identifying situations where manual introduction of structural bias is essential for accuracy, as against cases where sufficient data can get around distant or no supervision.","PeriodicalId":20754,"journal":{"name":"Proceedings of The Web Conference 2020","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Interpretable Complex Question Answering\",\"authors\":\"Soumen Chakrabarti\",\"doi\":\"10.1145/3366423.3380764\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We will review cross-community co-evolution of question answering (QA) with the advent of large-scale knowledge graphs (KGs), continuous representations of text and graphs, and deep sequence analysis. Early QA systems were information retrieval (IR) systems enhanced to extract named entity spans from high-scoring passages. Starting with WordNet, a series of structured curations of language and world knowledge, called KGs, enabled further improvements. Corpus is unstructured and messy to exploit for QA. If a question can be answered using the KG alone, it is attractive to ‘interpret’ the free-form question into a structured query, which is then executed on the structured KG. This process is called KGQA. Answers can be high-quality and explainable if the KG has an answer, but manual curation results in low coverage. KGs were soon found useful to harness corpus information. Named entity mention spans could be tagged with fine-grained types (e.g., scientist), or even specific entities (e.g., Einstein). The QA system can learn to decompose a query into functional parts, e.g., “which scientist” and “played the violin”. With increasing success of such systems, ambition grew to address multi-hop or multi-clause queries, e.g., “the father of the director of La La Land teaches at which university?” or “who directed an award-winning movie and is the son of a Princeton University professor?” Questions limited to simple path traversals in KGs have been encoded to a vector representation, which a decoder then uses to guide the KG traversal. Recently the corpus counterpart of such strategies has also been proposed. However, for general multi-clause queries that do not necessarily translate to paths, and seek to bind multiple variables to satisfy multiple clauses, or involve logic, comparison, aggregation and other arithmetic, neural programmer-interpreter systems have seen some success. Our key focus will be on identifying situations where manual introduction of structural bias is essential for accuracy, as against cases where sufficient data can get around distant or no supervision.\",\"PeriodicalId\":20754,\"journal\":{\"name\":\"Proceedings of The Web Conference 2020\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of The Web Conference 2020\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3366423.3380764\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of The Web Conference 2020","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3366423.3380764","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

随着大规模知识图(KGs)、文本和图的连续表示以及深度序列分析的出现,我们将回顾问答(QA)的跨社区协同进化。早期的QA系统是信息检索(IR)系统,用于从高分段落中提取命名实体跨度。从WordNet开始,一系列结构化的语言和世界知识管理,称为KGs,使进一步的改进成为可能。语料库是非结构化的,难以用于QA。如果可以单独使用KG回答一个问题,那么将自由形式的问题“解释”为结构化查询是很有吸引力的,然后在结构化KG上执行该查询。这个过程被称为KGQA。如果KG有答案,答案可以是高质量的和可解释的,但是手动策展导致低覆盖率。kg很快被发现对利用语料库信息很有用。可以用细粒度类型(例如,科学家)甚至特定实体(例如,爱因斯坦)标记命名实体提及范围。QA系统可以学习将查询分解为功能部分,例如,“哪个科学家”和“拉小提琴”。随着这类系统的日益成功,人们越来越希望解决多跳或多句查询,例如,“《爱乐之城》导演的父亲在哪所大学任教?”或者“谁导演了一部获奖电影,还是普林斯顿大学教授的儿子?”在KG中仅限于简单路径遍历的问题被编码为向量表示,然后解码器使用它来指导KG遍历。最近也有人提出了这种策略的语料库对应。然而,对于一般的多子句查询,不一定要转换为路径,并且寻求绑定多个变量以满足多个子句,或者涉及逻辑、比较、聚合和其他算法,神经编程-解释器系统已经取得了一些成功。我们的重点将放在识别人工引入结构偏差对准确性至关重要的情况,而不是在足够的数据可以绕过远程或无监督的情况下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Interpretable Complex Question Answering
We will review cross-community co-evolution of question answering (QA) with the advent of large-scale knowledge graphs (KGs), continuous representations of text and graphs, and deep sequence analysis. Early QA systems were information retrieval (IR) systems enhanced to extract named entity spans from high-scoring passages. Starting with WordNet, a series of structured curations of language and world knowledge, called KGs, enabled further improvements. Corpus is unstructured and messy to exploit for QA. If a question can be answered using the KG alone, it is attractive to ‘interpret’ the free-form question into a structured query, which is then executed on the structured KG. This process is called KGQA. Answers can be high-quality and explainable if the KG has an answer, but manual curation results in low coverage. KGs were soon found useful to harness corpus information. Named entity mention spans could be tagged with fine-grained types (e.g., scientist), or even specific entities (e.g., Einstein). The QA system can learn to decompose a query into functional parts, e.g., “which scientist” and “played the violin”. With increasing success of such systems, ambition grew to address multi-hop or multi-clause queries, e.g., “the father of the director of La La Land teaches at which university?” or “who directed an award-winning movie and is the son of a Princeton University professor?” Questions limited to simple path traversals in KGs have been encoded to a vector representation, which a decoder then uses to guide the KG traversal. Recently the corpus counterpart of such strategies has also been proposed. However, for general multi-clause queries that do not necessarily translate to paths, and seek to bind multiple variables to satisfy multiple clauses, or involve logic, comparison, aggregation and other arithmetic, neural programmer-interpreter systems have seen some success. Our key focus will be on identifying situations where manual introduction of structural bias is essential for accuracy, as against cases where sufficient data can get around distant or no supervision.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Gone, Gone, but Not Really, and Gone, But Not forgotten: A Typology of Website Recoverability Those who are left behind: A chronicle of internet access in Cuba Towards Automated Technologies in the Referencing Quality of Wikidata Companion of The Web Conference 2022, Virtual Event / Lyon, France, April 25 - 29, 2022 WWW '21: The Web Conference 2021, Virtual Event / Ljubljana, Slovenia, April 19-23, 2021
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1