{"title":"基于成绩数据和聚类效度指标的足球运动员聚类","authors":"Serhat Emre Akhanli, C. Hennig","doi":"10.1515/jqas-2022-0037","DOIUrl":null,"url":null,"abstract":"Abstract We analyse football (soccer) player performance data with mixed type variables from the 2014-15 season of eight European major leagues. We cluster these data based on a tailor-made dissimilarity measure. In order to decide between the many available clustering methods and to choose an appropriate number of clusters, we use the approach by Akhanli and Hennig (2020. “Comparing Clusterings and Numbers of Clusters by Aggregation of Calibrated Clustering Validity Indexes.” Statistics and Computing 30 (5): 1523–44). This is based on several validation criteria that refer to different desirable characteristics of a clustering. These characteristics are chosen based on the aim of clustering, and this allows to define a suitable validation index as weighted average of calibrated individual indexes measuring the desirable features. We derive two different clusterings. The first one is a partition of the data set into major groups of essentially different players, which can be used for the analysis of a team’s composition. The second one divides the data set into many small clusters (with 10 players on average), which can be used for finding players with a very similar profile to a given player. It is discussed in depth what characteristics are desirable for these clusterings. Weighting the criteria for the second clustering is informed by a survey of football experts.","PeriodicalId":16925,"journal":{"name":"Journal of Quantitative Analysis in Sports","volume":"12 1","pages":"103 - 123"},"PeriodicalIF":1.1000,"publicationDate":"2022-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Clustering of football players based on performance data and aggregated clustering validity indexes\",\"authors\":\"Serhat Emre Akhanli, C. Hennig\",\"doi\":\"10.1515/jqas-2022-0037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We analyse football (soccer) player performance data with mixed type variables from the 2014-15 season of eight European major leagues. We cluster these data based on a tailor-made dissimilarity measure. In order to decide between the many available clustering methods and to choose an appropriate number of clusters, we use the approach by Akhanli and Hennig (2020. “Comparing Clusterings and Numbers of Clusters by Aggregation of Calibrated Clustering Validity Indexes.” Statistics and Computing 30 (5): 1523–44). This is based on several validation criteria that refer to different desirable characteristics of a clustering. These characteristics are chosen based on the aim of clustering, and this allows to define a suitable validation index as weighted average of calibrated individual indexes measuring the desirable features. We derive two different clusterings. The first one is a partition of the data set into major groups of essentially different players, which can be used for the analysis of a team’s composition. The second one divides the data set into many small clusters (with 10 players on average), which can be used for finding players with a very similar profile to a given player. It is discussed in depth what characteristics are desirable for these clusterings. Weighting the criteria for the second clustering is informed by a survey of football experts.\",\"PeriodicalId\":16925,\"journal\":{\"name\":\"Journal of Quantitative Analysis in Sports\",\"volume\":\"12 1\",\"pages\":\"103 - 123\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Quantitative Analysis in Sports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/jqas-2022-0037\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"SOCIAL SCIENCES, MATHEMATICAL METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Quantitative Analysis in Sports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jqas-2022-0037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"SOCIAL SCIENCES, MATHEMATICAL METHODS","Score":null,"Total":0}
Clustering of football players based on performance data and aggregated clustering validity indexes
Abstract We analyse football (soccer) player performance data with mixed type variables from the 2014-15 season of eight European major leagues. We cluster these data based on a tailor-made dissimilarity measure. In order to decide between the many available clustering methods and to choose an appropriate number of clusters, we use the approach by Akhanli and Hennig (2020. “Comparing Clusterings and Numbers of Clusters by Aggregation of Calibrated Clustering Validity Indexes.” Statistics and Computing 30 (5): 1523–44). This is based on several validation criteria that refer to different desirable characteristics of a clustering. These characteristics are chosen based on the aim of clustering, and this allows to define a suitable validation index as weighted average of calibrated individual indexes measuring the desirable features. We derive two different clusterings. The first one is a partition of the data set into major groups of essentially different players, which can be used for the analysis of a team’s composition. The second one divides the data set into many small clusters (with 10 players on average), which can be used for finding players with a very similar profile to a given player. It is discussed in depth what characteristics are desirable for these clusterings. Weighting the criteria for the second clustering is informed by a survey of football experts.
期刊介绍:
The Journal of Quantitative Analysis in Sports (JQAS), an official journal of the American Statistical Association, publishes timely, high-quality peer-reviewed research on the quantitative aspects of professional and amateur sports, including collegiate and Olympic competition. The scope of application reflects the increasing demand for novel methods to analyze and understand data in the growing field of sports analytics. Articles come from a wide variety of sports and diverse perspectives, and address topics such as game outcome models, measurement and evaluation of player performance, tournament structure, analysis of rules and adjudication, within-game strategy, analysis of sporting technologies, and player and team ranking methods. JQAS seeks to publish manuscripts that demonstrate original ways of approaching problems, develop cutting edge methods, and apply innovative thinking to solve difficult challenges in sports contexts. JQAS brings together researchers from various disciplines, including statistics, operations research, machine learning, scientific computing, econometrics, and sports management.