{"title":"第一部分-加速器计划和应用","authors":"H. Klein, P. Pierini","doi":"10.1787/9789264044791-4-EN","DOIUrl":null,"url":null,"abstract":"An accelerator-driven system (ADS) for transmutation of nuclear waste typically requires a 600 MeV-1 GeV accelerator delivering a proton flux of a few mAs for demonstrators, and of a few tens of mAs for large industrial systems. This paper briefly describes the reference solution adopted for such a machine, based on a reliability-oriented linear superconducting accelerator, and focuses on the status of the R&D presently ongoing on some prototypical accelerator components. This work is performed within the 6th Framework Programme EC project \"EUROTRANS\".","PeriodicalId":88069,"journal":{"name":"Nuclear science abstracts","volume":"5 1","pages":"57-158"},"PeriodicalIF":0.0000,"publicationDate":"2008-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SESSION I - Accelerator Programmes and Applications\",\"authors\":\"H. Klein, P. Pierini\",\"doi\":\"10.1787/9789264044791-4-EN\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An accelerator-driven system (ADS) for transmutation of nuclear waste typically requires a 600 MeV-1 GeV accelerator delivering a proton flux of a few mAs for demonstrators, and of a few tens of mAs for large industrial systems. This paper briefly describes the reference solution adopted for such a machine, based on a reliability-oriented linear superconducting accelerator, and focuses on the status of the R&D presently ongoing on some prototypical accelerator components. This work is performed within the 6th Framework Programme EC project \\\"EUROTRANS\\\".\",\"PeriodicalId\":88069,\"journal\":{\"name\":\"Nuclear science abstracts\",\"volume\":\"5 1\",\"pages\":\"57-158\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nuclear science abstracts\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1787/9789264044791-4-EN\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear science abstracts","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1787/9789264044791-4-EN","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
SESSION I - Accelerator Programmes and Applications
An accelerator-driven system (ADS) for transmutation of nuclear waste typically requires a 600 MeV-1 GeV accelerator delivering a proton flux of a few mAs for demonstrators, and of a few tens of mAs for large industrial systems. This paper briefly describes the reference solution adopted for such a machine, based on a reliability-oriented linear superconducting accelerator, and focuses on the status of the R&D presently ongoing on some prototypical accelerator components. This work is performed within the 6th Framework Programme EC project "EUROTRANS".