热辅助穿孔(TAP)工艺加工含孔热塑性复合材料的力学性能研究

IF 1.8 Q3 ENGINEERING, MANUFACTURING Advanced Manufacturing: Polymer & Composites Science Pub Date : 2015-10-02 DOI:10.1080/20550340.2015.1117748
N. Brown, C. Worrall, S. Ogin, P. Smith
{"title":"热辅助穿孔(TAP)工艺加工含孔热塑性复合材料的力学性能研究","authors":"N. Brown, C. Worrall, S. Ogin, P. Smith","doi":"10.1080/20550340.2015.1117748","DOIUrl":null,"url":null,"abstract":"Abstract A thermally assisted piercing (TAP) process has been investigated as an alternative to current methods of machining holes in thermoplastic composites. The spike force/displacement responses during piercing were affected by both the processing temperature and the size of the heated area, as were the resultant microstructure and subsequent mechanical performance. Overall, the results suggest that for advanced manufacturing of thermoplastic composites, good tensile and compressive open-hole properties are produced in the TAP process when using small heated areas and higher temperatures.","PeriodicalId":7243,"journal":{"name":"Advanced Manufacturing: Polymer & Composites Science","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2015-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Investigation into the mechanical properties of thermoplastic composites containing holes machined by a thermally-assisted piercing (TAP) process\",\"authors\":\"N. Brown, C. Worrall, S. Ogin, P. Smith\",\"doi\":\"10.1080/20550340.2015.1117748\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract A thermally assisted piercing (TAP) process has been investigated as an alternative to current methods of machining holes in thermoplastic composites. The spike force/displacement responses during piercing were affected by both the processing temperature and the size of the heated area, as were the resultant microstructure and subsequent mechanical performance. Overall, the results suggest that for advanced manufacturing of thermoplastic composites, good tensile and compressive open-hole properties are produced in the TAP process when using small heated areas and higher temperatures.\",\"PeriodicalId\":7243,\"journal\":{\"name\":\"Advanced Manufacturing: Polymer & Composites Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2015-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Manufacturing: Polymer & Composites Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/20550340.2015.1117748\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Manufacturing: Polymer & Composites Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/20550340.2015.1117748","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 12

摘要

研究了一种热辅助穿孔(TAP)工艺,作为当前热塑性复合材料加工孔的替代方法。刺穿过程中的刺突力/位移响应受到加工温度和加热区域大小的影响,由此产生的微观结构和随后的机械性能也受到影响。总的来说,结果表明,对于热塑性复合材料的先进制造,当使用小加热区域和较高温度时,TAP工艺可以产生良好的拉伸和压缩裸眼性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Investigation into the mechanical properties of thermoplastic composites containing holes machined by a thermally-assisted piercing (TAP) process
Abstract A thermally assisted piercing (TAP) process has been investigated as an alternative to current methods of machining holes in thermoplastic composites. The spike force/displacement responses during piercing were affected by both the processing temperature and the size of the heated area, as were the resultant microstructure and subsequent mechanical performance. Overall, the results suggest that for advanced manufacturing of thermoplastic composites, good tensile and compressive open-hole properties are produced in the TAP process when using small heated areas and higher temperatures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.00
自引率
0.00%
发文量
11
审稿时长
16 weeks
期刊最新文献
Mitigating void growth in out-of-autoclave prepreg processing using a semi-permeable membrane to maintain resin pressure Analysis and development of a brazing method to weld carbon fiber-reinforced poly ether ketone ketone with amorphous PEKK In-situ analysis of cocured scarf patch repairs Bending properties of structural foams manufactured in a hot press process Experimental validation of co-cure process of honeycomb sandwich structures simulation: adhesive fillet shape and bond-line porosity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1