{"title":"热辅助穿孔(TAP)工艺加工含孔热塑性复合材料的力学性能研究","authors":"N. Brown, C. Worrall, S. Ogin, P. Smith","doi":"10.1080/20550340.2015.1117748","DOIUrl":null,"url":null,"abstract":"Abstract A thermally assisted piercing (TAP) process has been investigated as an alternative to current methods of machining holes in thermoplastic composites. The spike force/displacement responses during piercing were affected by both the processing temperature and the size of the heated area, as were the resultant microstructure and subsequent mechanical performance. Overall, the results suggest that for advanced manufacturing of thermoplastic composites, good tensile and compressive open-hole properties are produced in the TAP process when using small heated areas and higher temperatures.","PeriodicalId":7243,"journal":{"name":"Advanced Manufacturing: Polymer & Composites Science","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2015-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Investigation into the mechanical properties of thermoplastic composites containing holes machined by a thermally-assisted piercing (TAP) process\",\"authors\":\"N. Brown, C. Worrall, S. Ogin, P. Smith\",\"doi\":\"10.1080/20550340.2015.1117748\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract A thermally assisted piercing (TAP) process has been investigated as an alternative to current methods of machining holes in thermoplastic composites. The spike force/displacement responses during piercing were affected by both the processing temperature and the size of the heated area, as were the resultant microstructure and subsequent mechanical performance. Overall, the results suggest that for advanced manufacturing of thermoplastic composites, good tensile and compressive open-hole properties are produced in the TAP process when using small heated areas and higher temperatures.\",\"PeriodicalId\":7243,\"journal\":{\"name\":\"Advanced Manufacturing: Polymer & Composites Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2015-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Manufacturing: Polymer & Composites Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/20550340.2015.1117748\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Manufacturing: Polymer & Composites Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/20550340.2015.1117748","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Investigation into the mechanical properties of thermoplastic composites containing holes machined by a thermally-assisted piercing (TAP) process
Abstract A thermally assisted piercing (TAP) process has been investigated as an alternative to current methods of machining holes in thermoplastic composites. The spike force/displacement responses during piercing were affected by both the processing temperature and the size of the heated area, as were the resultant microstructure and subsequent mechanical performance. Overall, the results suggest that for advanced manufacturing of thermoplastic composites, good tensile and compressive open-hole properties are produced in the TAP process when using small heated areas and higher temperatures.