知识管理的自然语言处理方法——应用文档聚类对工程文档进行快速搜索和分组

Ívar Örn Arnarsson, Otto Frost, E. Gustavsson, M. Jirstrand, J. Malmqvist
{"title":"知识管理的自然语言处理方法——应用文档聚类对工程文档进行快速搜索和分组","authors":"Ívar Örn Arnarsson, Otto Frost, E. Gustavsson, M. Jirstrand, J. Malmqvist","doi":"10.1177/1063293X20982973","DOIUrl":null,"url":null,"abstract":"Product development companies collect data in form of Engineering Change Requests for logged design issues, tests, and product iterations. These documents are rich in unstructured data (e.g. free text). Previous research affirms that product developers find that current IT systems lack capabilities to accurately retrieve relevant documents with unstructured data. In this research, we demonstrate a method using Natural Language Processing and document clustering algorithms to find structurally or contextually related documents from databases containing Engineering Change Request documents. The aim is to radically decrease the time needed to effectively search for related engineering documents, organize search results, and create labeled clusters from these documents by utilizing Natural Language Processing algorithms. A domain knowledge expert at the case company evaluated the results and confirmed that the algorithms we applied managed to find relevant document clusters given the queries tested.","PeriodicalId":10680,"journal":{"name":"Concurrent Engineering","volume":"7 1","pages":"142 - 152"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Natural language processing methods for knowledge management—Applying document clustering for fast search and grouping of engineering documents\",\"authors\":\"Ívar Örn Arnarsson, Otto Frost, E. Gustavsson, M. Jirstrand, J. Malmqvist\",\"doi\":\"10.1177/1063293X20982973\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Product development companies collect data in form of Engineering Change Requests for logged design issues, tests, and product iterations. These documents are rich in unstructured data (e.g. free text). Previous research affirms that product developers find that current IT systems lack capabilities to accurately retrieve relevant documents with unstructured data. In this research, we demonstrate a method using Natural Language Processing and document clustering algorithms to find structurally or contextually related documents from databases containing Engineering Change Request documents. The aim is to radically decrease the time needed to effectively search for related engineering documents, organize search results, and create labeled clusters from these documents by utilizing Natural Language Processing algorithms. A domain knowledge expert at the case company evaluated the results and confirmed that the algorithms we applied managed to find relevant document clusters given the queries tested.\",\"PeriodicalId\":10680,\"journal\":{\"name\":\"Concurrent Engineering\",\"volume\":\"7 1\",\"pages\":\"142 - 152\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Concurrent Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/1063293X20982973\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Concurrent Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/1063293X20982973","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

产品开发公司以记录设计问题、测试和产品迭代的工程变更请求的形式收集数据。这些文档包含丰富的非结构化数据(例如自由文本)。先前的研究证实,产品开发人员发现,当前的IT系统缺乏准确检索具有非结构化数据的相关文档的能力。在本研究中,我们展示了一种使用自然语言处理和文档聚类算法从包含工程变更请求文档的数据库中查找结构或上下文相关文档的方法。其目的是通过使用自然语言处理算法,从根本上减少有效搜索相关工程文档、组织搜索结果和从这些文档创建标记聚类所需的时间。案例公司的一位领域知识专家对结果进行了评估,并确认我们应用的算法能够在给定测试查询的情况下找到相关的文档集群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Natural language processing methods for knowledge management—Applying document clustering for fast search and grouping of engineering documents
Product development companies collect data in form of Engineering Change Requests for logged design issues, tests, and product iterations. These documents are rich in unstructured data (e.g. free text). Previous research affirms that product developers find that current IT systems lack capabilities to accurately retrieve relevant documents with unstructured data. In this research, we demonstrate a method using Natural Language Processing and document clustering algorithms to find structurally or contextually related documents from databases containing Engineering Change Request documents. The aim is to radically decrease the time needed to effectively search for related engineering documents, organize search results, and create labeled clusters from these documents by utilizing Natural Language Processing algorithms. A domain knowledge expert at the case company evaluated the results and confirmed that the algorithms we applied managed to find relevant document clusters given the queries tested.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Sensitivity study of process parameters of wire arc additive manufacturing using probabilistic deep learning and uncertainty quantification Retraction Notice Decision-making solutions based artificial intelligence and hybrid software for optimal sizing and energy management in a smart grid system Harness collaboration between manufacturing Small and medium-sized enterprises through a collaborative platform based on the business model canvas Research on the evolution law of cloud manufacturing service ecosystem based on multi-agent behavior simulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1